2023
Autores
Monica, P; Cruz, N; Almeida, JM; Silva, A; Silva, E; Pinho, C; Almeida, C; Viegas, D; Pessoa, LM; Lima, AP; Martins, A; Zabel, F; Ferreira, BM; Dias, I; Campos, R; Araujo, J; Coelho, LC; Jorge, PS; Mendes, J;
Publicação
OCEANS 2023 - LIMERICK
Abstract
One way to mitigate the high costs of doing science or business at sea is to create technological infrastructures possessing all the skills and resources needed for successful maritime operations, and make those capabilities and skills available to the external entities requiring them. By doing so, the individual economic and scientific agents can be spared the enormous effort of creating and maintaining their own, particular set of equivalent capabilities, thus drastically lowering their initial operating costs. In addition to cost savings, operating based on fully-fledged, shared infrastructures not only allows the use of more advanced scientific equipment and highly skilled personnel, but it also enables the business teams (be it industry or research) to focus on their goals, rather than on equipment, logistics, and support. This paper will describe the TEC4SEA infrastructure, created precisely to operate as described. This infrastructure has been under implementation in the last few years, and has now entered its operational phase. This paper will describe it, present its current portfolio of services, and discuss the most relevant assets and facilities that have been recently acquired, so that the research and industrial communities requiring the use of such assets can fully evaluate their adequacy for their own purposes and projects.
2023
Autores
Martins, A; Almeida, J; Almeida, C; Matias, B; Ferreira, A; Machado, D; Ferreira, H; Pereira, R; Soares, E; Peixoto, PA; Silva, E;
Publicação
OCEANS 2023 - LIMERICK
Abstract
This paper presents the TURTLE hybrid robotic lander in the context of the field trials performed in the REP(MUS) 2022 military exercise. The TURTLE robot combines the characteristics and mobility of an autonomous underwater vehicle with the ones of a seabed lander, having been designed for extended permanence on the sea bottom and efficient ascending and dive to the deep sea. The REP( MUS) 2022 exercises organized by the Portuguese navy in collaboration with NATO organizations and other institutions demonstrated the large-scale use of unmanned marine systems in an operational scenario. The robotic system is presented as well as some of the results and experience from the field trials.
2023
Autores
Silva, E; Viegas, D; Martins, A; Almeida, J; Almeida, C; Neves, B; Madureira, P; Wheeler, AJ; Salavasidis, G; Phillips, A; Schaap, A; Murton, B; Berry, A; Weir, A; Dooly, G; Omerdic, E; Toal, D; Collins, PC; Miranda, M; Petrioli, C; Rodríguez, CB; Demoor, D; Drouet, C; El Serafy, G; Jesus, SM; Dañobeitia, J; Tegas, V; Cusi, S; Lopes, L; Bodo, B; Beguery, L; VanDam, S; Dumortier, J; Neves, L; Srivastava, V; Dahlgren, TG; Hestetun, JT; Eiras, R; Caldeira, R; Rossi, C; Spearman, J; Somoza, L; González, FJ; Bartolomé, R; Bahurel, P;
Publicação
OCEANS 2023 - LIMERICK
Abstract
By creating a dependable, transparent, and cost-effective system for forecasting and ongoing environmental impact monitoring of exploration and exploitation activities in the deep sea, TRIDENT seeks to contribute to the sustainable exploitation of seabed mineral resources. In order to operate autonomously in remote locations under harsh conditions and send real-time data to authorities in charge of granting licenses and providing oversight, this system will create and integrate new technology and innovative solutions. The efficient monitoring and inspection system that will be created will abide by national and international legal frameworks. At the sea surface, mid-water, and the bottom, TRIDENT will identify all pertinent physical, chemical, geological, and biological characteristics that must be monitored. It will also look for data gaps and suggest procedures for addressing them. These are crucial actions to take in order to produce accurate indicators of excellent environmental status, statistically robust environmental baselines, and thresholds for significant impact, allowing for the standardization of methods and tools. In order to monitor environmental parameters on mining and reference areas at representative spatial and temporal scales, the project consortium will thereafter develop and test an integrated system of stationary and mobile observatory platforms outfitted with the most recent automatic sensors and samplers. The system will incorporate high-capacity data processing pipelines able to gather, transmit, process, and display monitoring data in close to real-time to facilitate prompt actions for preventing major harm to the environment. Last but not least, it will offer systemic and technological solutions for predicting probable impacts of applying the developed monitoring and mitigation techniques.
2023
Autores
Oliveira, A; Dias, A; Santos, T; Rodrigues, P; Martins, A; Silva, E; Almeida, J;
Publicação
OCEANS 2023 - LIMERICK
Abstract
Offshore wind farms are becoming the main alternative to fossil fuels and the future key to mitigating climate change by achieving energy sustainability. With favorable indicators in almost every environmental index, these structures operate under varying and dynamic environmental conditions, leading to efficiency losses and sudden failures. For these reasons, it's fundamental to promote the development of autonomous solutions to monitor the health condition of the construction parts, preventing structural damage and accidents. This paper introduces a new simulation environment for testing and training autonomous inspection techniques under a more realistic offshore wind farm scenario. Combining the Gazebo simulator with ROS, this framework can include multi-robots with different sensors to operate in a customizable simulation environment regarding some external elements (fog, wind, buoyancy...). The paper also presents a use case composed of a 3D LiDAR-based technique for autonomous wind turbine inspection with UAV, including point cloud clustering, model estimation, and the preliminary results under this simulation framework using a mixed environment (offshore simulation with a real UAV platform).
2023
Autores
Pires, A; Dias, A; Silva, P; Ferreira, A; Rodrigues, P; Santos, T; Oliveira, A; Freitas, L; Martins, A; Almeida, J; Silva, E; Chaminé, HI;
Publicação
Arabian Journal of Geosciences
Abstract
2021
Autores
Amado, M; Lopes, F; Dias, A; Martins, A;
Publicação
2021 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)
Abstract
The detection and extraction of individual pylons and power lines from high-density point cloud (PC) LiDAR data are a relevant tool for evaluating the power lines utility corridors. Moreover, the presence of high vegetation and hilly terrain is a research challenger in the available methods. The paper presents a novel method for the extraction of pylons and power lines. Two steps compose the proposed approach: a pylon detection step based on top view projection, denoted by DFSS - Detect Filled Square Shapes, and a pylon arms detection step with the DPA Detect Pylon Arm algorithm. The results show that the proposed method could accurately and automatically extract pylons and the associated power lines, even if the dataset has low quality with downsampling, to reduce the processing time. Field tests were performed with a ground static LiDAR and a point cloud affected by downsampling voxel grid and Gaussian noise to simulate the expected LiDAR data from a UAV.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.