Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Hugo Miguel Silva

2024

Multibeam Multi-Frequency Characterization of Water Column Litter

Autores
Guedes, PA; Silva, H; Wang, S; Martins, A; Almeida, JM; Silva, E;

Publicação
Oceans Conference Record (IEEE)

Abstract
This paper explores the potential use of acoustic imaging and the use of a multi-frequency multibeam-echosounder (MBES) for monitoring marine litter in the water column. The main goal is to perform a test and validation setup using a simulation and actual experimental setup to determine if the MBES data can detect marine litter in a water column image (WCI) and if using multi-frequency MBES data will allow to better distinguish and characterize marine litter debris in detection applications. Results using simulated HoloOcean Environment and actual marine litter data revealed the successful detection of objects commonly found in ocean litter hotspots at various ranges and frequencies, enablingthe pursue of novel means of automatic detection and classification in MBES WCI data while using multi-frequency capabilities. © 2024 IEEE.

2024

Acoustic Imaging Learning-Based Approaches for Marine Litter Detection and Classification

Autores
Guedes, PA; Silva, HM; Wang, S; Martins, A; Almeida, J; Silva, E;

Publicação
Journal of Marine Science and Engineering

Abstract
This paper introduces an advanced acoustic imaging system leveraging multibeam water column data at various frequencies to detect and classify marine litter. This study encompasses (i) the acquisition of test tank data for diverse types of marine litter at multiple acoustic frequencies; (ii) the creation of a comprehensive acoustic image dataset with meticulous labelling and formatting; (iii) the implementation of sophisticated classification algorithms, namely support vector machine (SVM) and convolutional neural network (CNN), alongside cutting-edge detection algorithms based on transfer learning, including single-shot multibox detector (SSD) and You Only Look once (YOLO), specifically YOLOv8. The findings reveal discrimination between different classes of marine litter across the implemented algorithms for both detection and classification. Furthermore, cross-frequency studies were conducted to assess model generalisation, evaluating the performance of models trained on one acoustic frequency when tested with acoustic images based on different frequencies. This approach underscores the potential of multibeam data in the detection and classification of marine litter in the water column, paving the way for developing novel research methods in real-life environments.

  • 7
  • 7