Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Alcino Cunha

2024

Alloy Goes Fuzzy

Autores
Silva, P; Cunha, A; Macedo, N; Oliveira, JN;

Publicação
RIGOROUS STATE-BASED METHODS, ABZ 2024

Abstract
Humans are good at understanding subjective or vague statements which, however, are hard to express in classical logic. Fuzzy logic is an evolution of classical logic that can cope with vague terms by handling degrees of truth and not just the crisp values true and false. Logic is the formal basis of computing, enabling the formal design of systems supported by tools such as model checkers and theorem provers.This paper shows how a model checker such as Alloy can evolve to handle both classical and fuzzy logic, enabling the specification of high-level quantitative relational models in the fuzzy domain. In particular, the paper showcases how QAlloy-F (a conservative, general-purpose quantitative extension to standard Alloy) can be used to tackle fuzzy problems, namely in the context of validating the design of fuzzy controllers. The evaluation of QAlloy-F against examples taken from various classes of fuzzy case studies shows the approach to be feasible.

2024

Alloy Repair Hint Generation Based on Historical Data

Autores
Barros, A; Neto, H; Cunha, A; Macedo, N; Paiva, ACR;

Publicação
Formal Methods - 26th International Symposium, FM 2024, Milan, Italy, September 9-13, 2024, Proceedings, Part II

Abstract
Platforms to support novices learning to program are often accompanied by automated next-step hints that guide them towards correct solutions. Many of those approaches are data-driven, building on historical data to generate higher quality hints. Formal specifications are increasingly relevant in software engineering activities, but very little support exists to help novices while learning. Alloy is a formal specification language often used in courses on formal software development methods, and a platform—Alloy4Fun—has been proposed to support autonomous learning. While non-data-driven specification repair techniques have been proposed for Alloy that could be leveraged to generate next-step hints, no data-driven hint generation approach has been proposed so far. This paper presents the first data-driven hint generation technique for Alloy and its implementation as an extension to Alloy4Fun, being based on the data collected by that platform. This historical data is processed into graphs that capture past students’ progress while solving specification challenges. Hint generation can be customized with policies that take into consideration diverse factors, such as the popularity of paths in those graphs successfully traversed by previous students. Our evaluation shows that the performance of this new technique is competitive with non-data-driven repair techniques. To assess the quality of the hints, and help select the most appropriate hint generation policy, we conducted a survey with experienced Alloy instructors. © The Author(s) 2025.

  • 15
  • 15