Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Emanuel Peres Correia

2019

Grapevine Varieties Classification Using Machine Learning

Autores
Marques, P; Pádua, L; Adão, T; Hruska, J; Sousa, J; Peres, E; Sousa, JJ; Morais, R; Sousa, AMR;

Publicação
Progress in Artificial Intelligence - 19th EPIA Conference on Artificial Intelligence, EPIA 2019, Vila Real, Portugal, September 3-6, 2019, Proceedings, Part I

Abstract
Viticulture has a major impact in the European economy and over the years the intensive grapevine production led to the proliferation of many varieties. Traditionally these varieties are manually catalogued in the field, which is a costly and slow process and being, in many cases, very challenging to classify even for an experienced ampelographer. This article presents a cost-effective and automatic method for grapevine varieties classification based on the analysis of the leaf’s images, taken with an RGB sensor. The proposed method is divided into three steps: (1) color and shape features extraction; (2) training and; (3) classification using Linear Discriminant Analysis. This approach was applied in 240 leaf images of three different grapevine varieties acquired from the Douro Valley region in Portugal and it was able to correctly classify 87% of the grapevine leaves. The proposed method showed very promising classification capabilities considering the challenges presented by the leaves which had many shape irregularities and, in many cases, high color similarities for the different varieties. The obtained results compared with manual procedure suggest that it can be used as an effective alternative to the manual procedure for grapevine classification based on leaf features. Since the proposed method requires a simple and low-cost setup it can be easily integrated on a portable system with real-time processing to assist technicians in the field or other staff without any special skills and used offline for batch classification. © Springer Nature Switzerland AG 2019.

2019

MixAR: A Multi-Tracking Mixed Reality System to Visualize Virtual Ancient Buildings Aligned Upon Ruins

Autores
Adao, T; Padua, L; Narciso, D; Sousa, JJ; Agrellos, L; Peres, E; Magalhaes, L;

Publicação
JOURNAL OF INFORMATION TECHNOLOGY RESEARCH

Abstract
MixAR, a full-stack system capable of providing visualization of virtual reconstructions seamlessly integrated in the real scene (e.g. upon ruins), with the possibility of being freely explored by visitors, in situ, is presented in this article. In addition to its ability to operate with several tracking approaches to be able to deal with a wide variety of environmental conditions, MixAR system also implements an extended environment feature that provides visitors with an insight on surrounding points-of-interest for visitation during mixed reality experiences (positional rough tracking). A procedural modelling tool mainstreams augmentation models production. Tests carried out with participants to ascertain comfort, satisfaction and presence/immersion based on an in-field MR experience and respective results are also presented. Ease to adapt to the experience, desire to see the system in museums and a raised curiosity and motivation contributed as positive points for evaluation. In what regards to sickness and comfort, the lowest number of complaints seems to be satisfactory. Models' illumination/re-lightning must be addressed in the future to improve the user's engagement with the experiences provided by the MixAR system.

2019

Vineyard Variability Analysis through UAV-Based Vigour Maps to Assess Climate Change Impacts

Autores
Padua, L; Marques, P; Adao, T; Guimaraes, N; Sousa, A; Peres, E; Sousa, JJ;

Publicação
AGRONOMY-BASEL

Abstract
Climate change is projected to be a key influence on crop yields across the globe. Regarding viticulture, primary climate vectors with a significant impact include temperature, moisture stress, and radiation. Within this context, it is of foremost importance to monitor soils' moisture levels, as well as to detect pests, diseases, and possible problems with irrigation equipment. Regular monitoring activities will enable timely measures that may trigger field interventions that are used to preserve grapevines' phytosanitary state, saving both time and money, while assuring a more sustainable activity. This study employs unmanned aerial vehicles (UAVs) to acquire aerial imagery, using RGB, multispectral and thermal infrared sensors in a vineyard located in the Portuguese Douro wine region. Data acquired enabled the multi-temporal characterization of the vineyard development throughout a season through the computation of the normalized difference vegetation index, crop surface models, and the crop water stress index. Moreover, vigour maps were computed in three classes (high, medium, and low) with different approaches: (1) considering the whole vineyard, including inter-row vegetation and bare soil; (2) considering only automatically detected grapevine vegetation; and (3) also considering grapevine vegetation by only applying a normalization process before creating the vigour maps. Results showed that vigour maps considering only grapevine vegetation provided an accurate representation of the vineyard variability. Furthermore, significant spatial associations can be gathered through (i) a multi-temporal analysis of vigour maps, and (ii) by comparing vigour maps with both height and water stress estimation. This type of analysis can assist, in a significant way, the decision-making processes in viticulture.

2019

Precision enology in Tawny Port wine aging process: Monitoring barrel to barrel variation in oxygen, temperature and redox potential

Autores
Cosme, F; Morais, R; Peres, E; Cunha, JB; Fraga, I; Milheiro, J; Filipe Ribeiro, L; Mendes, J; Nunes, FM;

Publicação
42ND WORLD CONGRESS OF VINE AND WINE

Abstract
Tawny Port wine is a category of the famous Portuguese fortified wine commercialized worldwide and produced in the Douro Demarcated Region. Tawny Port wine oxidative aging is a multifactorial process critical for reaching the wanted quality. Real time monitoring of important intrinsic and extrinsic factors that are known to affect both time and quality of the aging process are important to optimize and to manage the natural variability between wines aged in different long-used wood barrels. This study presents the design, development and implementation of a remote distributed system to monitor parameters that are known to be critical for Tawny Port wine aging process. Results indicate that the distributed monitoring system was capable to detect differences between oak wood barrels and between the different storage conditions. Indeed, oxygen and redox potential were the wine's parameters where the differences found between different barrels were greater under the same storage conditions. Considering that Tawny Port wine aging process is oxidative, a variation in the wine's aging process between different wood barrels is to be expected. Actually, significant differences were detected in the oxygen consumption rate amongst the different barrels. Differences in the phenolic composition was also observed in the aged wine (controlled temperature and room temperature).

2019

Mapping seaweed beds using multispectral imagery retrieved by unmanned aerial vehicles

Autores
Borges, D; Azevedo, I; Pádua, L; Adão, T; Peres, E; Sousa, J; Sousa Pinto, I; Gonçalves, J;

Publicação
Frontiers in Marine Science

Abstract

2019

Preface

Autores
Cruz Cunha, MM; Varajão, JE; Martinho, R; Rijo, R; Peres, E; Domingos, D;

Publicação
Procedia Computer Science

Abstract

  • 10
  • 21