Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Manuel Santos Silva

2020

Agricultural robotics: A state of the art survey

Autores
Oliveira, LFP; Silva, MF; Moreira, AP;

Publicação
Robots in Human Life- Proceedings of the 23rd International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2020

Abstract
The constant increase in the world population has progressively demanded that humanity develop new technologies to face challenges such as providing high-quality food to the consumer market. In this sense, the concept of precision agriculture arises, proposing the development of agricultural activities such as preparing the land, sowing, planting, treating plants and harvesting automatically through robotic systems. This study focuses on performing a systematic review of the state of the art of robotics applications to execute agricultural activities. Through a comparative analysis of the existing solutions it was possible to highlight the similarities, differences and limitations of several agricultural robots. After looking at the needs of agricultural tasks and the limitations of robots, the challenges that are still unresolved and their possible solutions are indicated. © CLAWAR Association Ltd.

2021

Autonomous wheelchair for patient's transportation on healthcare institutions

Autores
Baltazar, AR; Petry, MR; Silva, MF; Moreira, AP;

Publicação
SN APPLIED SCIENCES

Abstract
The transport of patients from the inpatient service to the operating room is a recurrent task in a hospital routine. This task is repetitive, non-ergonomic, time consuming, and requires the labor of patient transporters. In this paper is presented a system, named Connected Driverless Wheelchair, that can receive transportation requests directly from the hospital information management system, pick up patients at their beds, navigate autonomously through different floors, avoid obstacles, communicate with elevators, and drop patients off at the designated operating room. As a result, a prototype capable of transporting patients autonomously in hospital environments was obtained. Although it was impossible to test the final developed system at the hospital as planned, due to the COVID-19 pandemic, the extensive tests conducted at the robotics laboratory facilities, and our previous experience in integrating mobile robots in hospitals, allowed to conclude that it is perfectly prepared for this integration to be carried out.The achieved results are relevant since this is a system that may be applied to support these types of tasks in the future, making the transport of patients more efficient (both from a cost and time perspective), without unpredictable delays and, in some cases, safer.

2021

The MopBot Cleaning Robot - An EPS@ISEP 2020 Project

Autores
Tuluc, C; Verberne, F; Lasota, S; de Almeida, T; Malheiro, B; Justo, J; Ribeiro, C; Silva, MF; Ferreira, P; Guedes, P;

Publicação
EDUCATING ENGINEERS FOR FUTURE INDUSTRIAL REVOLUTIONS, ICL2020, VOL 1

Abstract
Waste is one of the biggest problems on Earth today. In the spring of 2020, a team of students enrolled in the European Project Semester at Instituto Superior de Engenharia decided to contribute with the design of an ethically and sustainability-oriented autonomous cleaning robot named MopBot. The project started with the research on similar solutions, ethics, marketing and sustainability to define a concept and create a functional, ethical and sustainability driven design, including the complete control system. Finally, given the undergoing pandemic, the operation of the MopBot was simulated using CoppeliaSim. MopBot is a medium-sized vacuum cleaner, with two vertical brushes, intended to clean autonomously large areas inside buildings such as shopping malls or corridors. It is shipped with a sustainable packaging solution which can be re-purposed as a disposal box for electrical components.

2021

Design, Modeling, and Simulation of a Wing Sail Land Yacht

Autores
Tinoco, V; Malheiro, B; Silva, MF;

Publicação
APPLIED SCIENCES-BASEL

Abstract
Featured Application This work describes the design, modeling, and simulation of a free-rotating wing sail solution for an autonomous environmental land yacht probe. The adopted method involves the application of land sailing principles for the design, the usage of Fusion 360 tool for 3D modeling, and the integration of Gazebo with the Robotic Operating System (ROS) framework for the simulation of the land yacht. Autonomous land yachts can play a major role in the context of environmental monitoring, namely, in open, flat, windy regions, such as iced planes or sandy shorelines. This work addresses the design, modeling, and simulation of a land yacht probe equipped with a rigid free-rotating wing sail and tail flap. The wing was designed with a symmetrical airfoil and dimensions to provide the necessary thrust to displace the vehicle. Specifically, it proposes a novel design and simulation method for free rotating wing sail autonomous land yachts. The simulation relies on the Gazebo simulator together with the Robotic Operating System (ROS) middleware. It uses a modified Gazebo aerodynamics plugin to generate the lift and drag forces and the yawing moment, two newly created plugins, one to act as a wind sensor and the other to set the wing flap angular position, and the 3D model of the land yacht created with Fusion 360. The wing sail aligns automatically to the wind direction and can be set to any given angle of attack, stabilizing after a few seconds. Finally, the obtained polar diagram characterizes the expected sailing performance of the land yacht. The described method can be adopted to evaluate different wing sail configurations, as well as control techniques, for autonomous land yachts.

2021

Smart Bicycle Probe - An EPS@ISEP 2020 Project

Autores
Boularas, M; Szmytke, Z; Smith, L; Isik, K; Ruusunen, J; Malheiro, B; Justo, J; Ribeiro, C; Silva, MF; Ferreira, P; Guedes, P;

Publicação
EDUCATING ENGINEERS FOR FUTURE INDUSTRIAL REVOLUTIONS, ICL2020, VOL 1

Abstract
Air pollution kills approximately 7 million people every year and nine out of ten people are exposed to high levels of airborne pollutants. This paper describes the design of a bicycle air probe by a team of multicultural and multidisciplinary students of the European Project Semester, during the spring of 2020. This learning experience started with the analysis of the state-of-the-art, ethics, marketing and sustainability dimensions, and was followed by the design, development and simulation of a proof-of-concept solution. The result is GOairLight - a bicycle probe paired with a mobile app. The probe collects air quality, humidity and temperature data as cyclists ride, while the mobile app shares the collected data with the community, by means of a cloud database, presents relevant air quality information and suggests less polluted routes. Furthermore, it relies on a sustainable energy source - a dynamo powered by the cyclist - and automatic lighting. The latter feature improves cyclist visibility and raises the awareness towards the cyclist, contributing to increased road safety.

2021

Advances in Agriculture Robotics: A State-of-the-Art Review and Challenges Ahead

Autores
Oliveira, LFP; Moreira, AP; Silva, MF;

Publicação
ROBOTICS

Abstract
The constant advances in agricultural robotics aim to overcome the challenges imposed by population growth, accelerated urbanization, high competitiveness of high-quality products, environmental preservation and a lack of qualified labor. In this sense, this review paper surveys the main existing applications of agricultural robotic systems for the execution of land preparation before planting, sowing, planting, plant treatment, harvesting, yield estimation and phenotyping. In general, all robots were evaluated according to the following criteria: its locomotion system, what is the final application, if it has sensors, robotic arm and/or computer vision algorithm, what is its development stage and which country and continent they belong. After evaluating all similar characteristics, to expose the research trends, common pitfalls and the characteristics that hinder commercial development, and discover which countries are investing into Research and Development (R&D) in these technologies for the future, four major areas that need future research work for enhancing the state of the art in smart agriculture were highlighted: locomotion systems, sensors, computer vision algorithms and communication technologies. The results of this research suggest that the investment in agricultural robotic systems allows to achieve short-harvest monitoring-and long-term objectives-yield estimation.

  • 14
  • 33