Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Manuel Santos Silva

2024

Line Fitting-Based Corner-Like Detector for 2D Laser Scanners Data

Autores
Sousa, RB; Placido Sobreira, HM; Silva, MF; Moreira, AP;

Publicação
10th International Conference on Automation, Robotics and Applications, ICARA 2024, Athens, Greece, February 22-24, 2024

Abstract
The extraction of geometric information from the environment may be of interest to localisation and mapping algorithms. Existent literature on extracting geometric features from 2D laser data focuses mainly on detecting lines. Regarding corners, most methodologies use the intersection of line segment features. This paper presents a feature extraction algorithm for corner-like points in the 2D laser scan. The proposed methodol-ogy defines arrival and departure neighbourhoods around each scan point and performs local line fitting evaluated in multiple distance-based scales. Then, a set of indicators based on line fitting error, the angle between arrival and departure lines, and consecutive observation of the same keypoint across different scales determine the existence of a corner-like feature. The experiments evaluated the corner-like features regarding their relative position and observability, achieving standard deviations on the relative position lower than the sensor noise and visibility ratios higher than 75% with very low false positives rates. © 2024 IEEE.

2024

Smart Adjustable Furniture – An EPS@ISEP 2023 Project

Autores
Pronczuk, A; Mertz Revol, C; Hinzpeter, J; Smeets, J; Chmielik, M; Duarte, J; Malheiro, B; Ribeiro, C; Justo, J; Silva, F; Ferreira, P; Guedes, P;

Publicação
Lecture Notes in Educational Technology

Abstract
Small living spaces require ingenious solutions that are functional, ergonomic and, above all, reconfigurable. This project for smart, ergonomic and adjustable furniture was embraced by a team of students from different countries, universities and study areas enrolled in the European Project Semester (EPS) at Instituto Superior de Engenharia do Porto (ISEP). EPS is a design project where international students work in teams to create a solution to a real problem from scratch, analysing the state of the art, the market and the associated ethical and sustainability issues. As a project-based learning process, EPS aims to prepare engineering students to work together in multidisciplinary teams, develop personal skills and address the challenges of the contemporary world. The current project aims to design, simulate and test an ethically and sustainability-driven safe and transformable furniture. Amplea is the adjustable furniture solution developed by five EPS students in spring 2023. It transforms into a kitchen counter, dining table or standing desk. By transforming easily, Amplea’s design provides more comfort and saves space in small living spaces. This paper summarises the research, the design of the solution and the development and testing of the proof-of-concept prototype. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.

2024

Cattle Monitoring Blimp – An EPS@ISEP 2023 Project

Autores
Blommestijn, K; Dallongeville, K; Paulsen, M; Mamos, M; Gupta, S; Duarte, J; Malheiro, B; Ribeiro, C; Justo, J; Silva, F; Ferreira, P; Guedes, P;

Publicação
Lecture Notes in Educational Technology

Abstract
This paper describes the project based learning experience of a multidisciplinary and multicultural team of students enrolled in the spring of 2023 on the European Project Semester at the Instituto Superior de Engenharia do Porto (EPS@ISEP). Animo is an original blimp based concept that aims to help farmers better manage their livestock. Its development was motivated by the difficulty to effectively monitor cattle herds over vast areas, especially in remote locations where locating animals is challenging. This environmentally friendly solution offers real-time livestock monitoring without thermal engines. Real-time monitoring is achieved through the blimp’s extensive animal data collection. Farmers may discover and handle quickly herd welfare issues by accessing information via a user-friendly App. With an emphasis on accessibility and environmental sustainability, Animo seeks to increase agricultural productivity and profitability. The user controls the blimp motion through the app to obtain a comprehensive farm view. Targeting Australia’s large cattle stations, it aims to enhance productivity while minimising the environmental impact. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.

2024

Smart Supermarket Cart – An EPS@ISEP 2023 Project

Autores
Orós, M; Robu, M; van Klaveren, H; Gajda, D; Van Dyck, J; Krings, T; Duarte, J; Malheiro, B; Ribeiro, C; Justo, J; Silva, F; Ferreira, P; Guedes, P;

Publicação
Lecture Notes in Educational Technology

Abstract
The technological revolution experienced over the last two decades, together with changes in shopping behaviour, has led supermarkets to consider smart shopping trolleys. Recently, several companies have tested and implemented smart services and devices, such as smart shopping carts with scanners, automatic payment methods, or self-payment locations, to maximise supermarket profits by reducing staff and improving the customer experience. In the spring of 2023, a team of six students enrolled in the European Project Semester at Instituto Superior de Engenharia do Porto (ISEP) proposed FESmarket, an innovative smart shopping cart solution. The user-centred design focused on making the shopping interaction and experience more efficient, comfortable, and satisfactory. Form (balancing aesthetics with innovation), function (selecting functionalities based on the most disruptive technologies), market (fulfilling the identified needs), sustainability (minimising the use of resources), and ethics (respecting human values) are the pillars of the project. FESmarket proposes a smart shopping trolley equipped a built-in touch screen for real-time information on products and their location, cameras for product identification, an audio assistance system, a refrigeration chamber, and a mobile app interface for the customer. Finally, a proof-of-concept prototype was assembled and tested to validate the viability of the designed solution. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.

2024

Raising Awareness to Waste Collection and Recycling in Urban Spaces – An EPS@ISEP 2023 Project

Autores
Bohon, N; Durand, O; Emmelot, C; Hellemans, K; Jasny, L; Reisinger, K; Duarte, J; Malheiro, B; Ribeiro, C; Justo, J; Silva, F; Ferreira, P; Guedes, P;

Publicação
Lecture Notes in Educational Technology

Abstract
The European Project Semester (EPS) at Instituto Superior de Engenharia do Porto (ISEP) is a capstone engineering design programme in which students, organised in multidisciplinary and multicultural teams, develop a solution for a proposed problem, taking into account sustainability, ethical and market concerns. This paper describes a research project aimed at raising awareness and changing behaviour in relation to waste disposal, carried out by a team of EPS@ISEP students during spring 2023. BinIt, as the project is named, targets young adults who want to live in a cleaner city. Unlike other campaigns, it simplifies and stimulates proper waste disposal and recycling, tackling the root of the problem and creating a new social norm. BinIt includes a campaign, a web app and the Garbage Gladiator bin. The app consists of a city map where users can pin and check bin locations, and an educational platform with information on waste disposal and recycling issues. Gamification is incorporated through a ranking system. The Garbage Gladiator is a physical container for urban public spaces specially designed to encourage people to dispose of their waste correctly. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.

2013

Level monitoring system for waste oil containers: an EPS@ISEP project

Autores
Moura, Marcos; Tasa, Mihkel; Olejniczak, Olga Agata; Ahmad, Naeem; Silva, António Ferreira da; Malheiro, Benedita; Silva, Manuel F.; Ribeiro, Maria Cristina; Caetano, Nídia Sá; Ferreira, Paulo; Guedes, Pedro;

Publicação
1st International Conference of the Portuguese Society for Engineering Education

Abstract
Waste oil recycling companies play a very important role in our society. Competition among companies is tough and process optimization is essential for survival. By equipping oil containers with a level monitoring system that periodically reports the level and alerts when it reaches the preset threshold, the oil recycling companies are able to streamline the oil collection process and, thus, reduce the operation costs while maintaining the quality of service. This paper describes the development of this level monitoring system by a team of four students from different engineering backgrounds and nationalities. The team conducted a study of the state of the art, draw marketing and sustainable development plans and, finally, designed and implemented a prototype that continuously measures the container content level and sends an alert message as soon as it reaches the preset capacity.

  • 34
  • 35