Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Germano Veiga

2013

Evaluation of sensors and algorithms for person detection for personal robots

Autores
Tonelo, C; Moreira, AP; Veiga, G;

Publicação
IEEE 15th International Conference on e-Health Networking, Applications and Services, Healthcom 2013, Lisbon, Portugal, October 9-12, 2013

Abstract
The main objective of this project was to evaluate the sensing system for person detection in the scope of its integration in a mobile robotic platform for Ambient Assisted Living. Two sensors were considered, a camera and a depth sensor. For the camera (2D), 3 different algorithms were implemented: face detection, tracking and recognition. For the depth sensor the whole body detection was tested using skeleton tracking. The results showed that the face detection and recognition algorithms had a very small range, and the face tracking demonstrated to reach a higher distance. However, the latter exhibited poor results when confronted with illumination variations. The skeleton tracking algorithm provided good results, being capable of tracking relatively close to the sensor and up to 3 meters distance. Thus, the 2D face recognition can be used for short distances to identify the person, while the 3D skeleton tracking can be appropriated for distant tracking of the person. This work showed that the integration of these sensing systems, in a robotic platform, can make a robust robot capable of human interaction in home environments. © 2013 IEEE.

2014

In Vitro Zinc-Air Battery Evaluation for Use in Intraoral Medical Devices

Autores
Amaral, M; do Vale, F; Silva, J; Caramelo, F; Veiga, G;

Publicação
JOURNAL OF MEDICAL DEVICES-TRANSACTIONS OF THE ASME

Abstract
The aim of the present work was to evaluate the possibility of using zinc-air batteries in intraoral medical devices. We analyzed the electrical behavior of zinc-air batteries when submitted to different levels of temperature, humidity, and limited quantities of air. The experimental setup was divided in three different parts. Firstly, a set of batteries were tested within a climatic chamber and subjected to discharging tests similar to those recommended by the manufacturer. The climatic chamber allowed an accurate variation of humidity and temperature. Secondly, the batteries were placed in a small prototype of intraoral medical device and tested in the absence of air. Lastly, we used a robot arm to repeatedly immerse the prototype in artificial saliva. The results obtained demonstrated the viability of zinc-air batteries as a power solution for intraoral medical devices, as they tolerate high levels of humidity and are capable of working with limited quantities of air. In addition, this kind of battery presents a volume to electrical capacity ratio more than three times higher than lithium batteries, which may open important improvement for powered medical devices.

2018

Enhancement of Industrial Logistic Systems with Semantic 3D Representations for Mobile Manipulators

Autores
Toscano, C; Arrais, R; Veiga, G;

Publicação
ROBOT 2017: THIRD IBERIAN ROBOTICS CONFERENCE, VOL 2

Abstract
This paper proposes a logistic planner with supplementary 3D spatial representations to enhance and interact with traditional logistic systems on the context of mobile manipulators performing internal logistics operations. By defining a hierarchical structure, the logistic world model, as the central entity synchronized between multiple system components, the reliability and accuracy of the logistic system is strengthened. The proposed approach aims at implementing a robust and intuitive solution for the set-up of mobile manipulator based logistic systems. The logistic planner includes a web based interface for fast setup of the warehouse layout based on robot sensing, as well as the definition of missions for the fleet of robotic systems.

2018

Poses Optimisation Methodology for High Redundancy Robotic Systems

Autores
Tavares, P; Costa, P; Veiga, G; Moreira, AP;

Publicação
ROBOT 2017: THIRD IBERIAN ROBOTICS CONFERENCE, VOL 2

Abstract
The need for efficient automation methods has prompted the fast development in the field of Robotics. However, most robotic solutions found in industrial environments lack in both flexibility and adaptability to be applied to any generic task. A particular problem arises when robots are integrated in work cells with extra degrees of freedom, such as external axis or positioners. The specification/design of high redundancy systems, including robot selection, tool and fixture design, is a multi-variable problem with strong influence in the final performance of the work cell. This work builds on top of optimisation techniques to deal with the optimal poses reachability for high redundancy robotic systems. In this paper, it will be proposed a poses optimisation approach to be applicable within high redundancy robotic systems. The proposed methodology was validated by using real environment existent infrastructures, namely, the national CoopWeld project.

2013

Interactive Industrial Robot Programming for the Ceramic Industry Regular Paper

Autores
Veiga, G; Malaca, P; Cancela, R;

Publicação
INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS

Abstract
This paper presents an interactive programming method for programming industrial robots in ceramic applications. The main purpose was to develop a simple but flexible programming system that empowers the user with product driven programming without compromising flexibility. To achieve this flexibility, a two step hybrid programming model was designed: first the user sketches the desired trajectory in a spatial augmented reality programming table using the final product and then relies on an advanced 3D graphical system to tune the robot trajectory in the final workcell. The results measured by the end-user feedback show that a new level of flexibility was reached for this type of application.

2014

Gearing Up and Accelerating Cross-fertilization between Academic and Industrial Robotics Research in Europe: - Technology Transfer Experiments from the ECHORD Project

Autores
Röhrbein, F; Veiga, G; Natale, C;

Publicação
Springer Tracts in Advanced Robotics

Abstract

  • 6
  • 14