Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Helena Vasconcelos

1999

On-line dynamic security assessment of isolated networks integrating large wind power production

Autores
Pecas Lopes, JA; Hatziargyriou, N; Vasconcelos, M; Karapidakis, E; Fidalgo, J;

Publicação
Wind Engineering

Abstract
The paper describes the on-line dynamic security assessment functions developed within the European Union, DGXII programme, CARE. These functions are based exclusively on the application of machine learning techniques. A description of the problem and the data set generation procedure for the Crete island power system are included. Comparative results regarding performances of Decision Trees, Kernel Regression Trees and Neural Networks are presented and discussed.The paper describes the on-line dynamic security assessment functions developed within the European Union, DGXII programme, CARE. These functions are based exclusively on the application of machine learning techniques. A description of the problem and the data set generation procedure for the Crete island power system are included. Comparative results regarding performances of Decision Trees, Kernel Regression Trees and Neural Networks are presented and discussed.

2001

Preliminary results from the MORE advanced control advice project for secure operation of isolated power systems with increased renewable energy penetration and storage

Autores
Hatziargyriou, N; Contaxis, G; Matos, M; Pecas Lopes, JA; Vasconcelos, MH; Kariniotakis, G; Mayer, D; Halliday, J; Dutton, G; Dokopoulos, P; Bakirtzis, A; Stefanakis, J; Gigantidou, A; O'Donnell, P; McCoy, D; Fernandes, MJ; Cotrim, JMS; Figueira, AP;

Publicação
2001 IEEE Porto Power Tech Proceedings

Abstract
In this paper, preliminary results from MORE CARE, a European R&D project financed within the Energy Program are described. This project has as main objective the development of an advanced control software system, aiming to optimize the overall performance of isolated and weakly interconnected systems in liberalized market environments by increasing the share of wind energy and other renewable forms, including advanced on-line security functions. The main features of the control system comprise advanced software modules for load and wind power forecasting, unit commitment and economic dispatch of the conventional and renewable units and on-line security assessment capabilities integrated in a friendly Man-Machine environment. Pilot installations of advanced control functions are foreseen on the islands of Crete, Ireland and Madeira. © 2001 IEEE.

2024

Flexibility extension in hydropower for the provision of frequency control services within the European energy transition

Autores
Vasconcelos, MH; Castro, MV; Nicolet, C; Moreira, CL;

Publicação
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS

Abstract
This paper presents a comprehensive assessment of the large-scale deployment of hydropower on the provision of frequency regulation services, when equipped with the extended flexibility solutions being developed and/or tested within the scope of the XFLEX HYDRO project. The current analysis is performed on the Iberian Peninsula (IP) power grid considering its interconnection to the Continental Europe (CE) system, since this power system zone is expected to have the most severe frequency transient behaviour in future scenarios with increased shares of variable renewable energies. For this purpose, prospective scenarios with increased shares of time variable renewable generation were identified and analysed. To assess the impacts of the hydropower flexibility solutions on frequency dynamics after a major active power loss, extensive time domain simulations were performed of the power system, including reliable reduced order dynamic models for the hydropower flexibility solutions under evaluation. This research assesses the effects of synchronous and synthetic inertia, and of the Frequency Containment Reserve (FCR) and Fast Frequency Response (FFR) services as specified in European grid codes. The main findings highlight the potential of hydropower inertia and of adopting a variable speed technology for enhancing frequency stability, while contribute to better understand the role of hydropower plants in future power systems.

  • 3
  • 3