Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Ricardo Campos

2023

tieval: An Evaluation Framework for Temporal Information Extraction Systems

Autores
Sousa, H; Jorge, A; Campos, R;

Publicação
PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023

Abstract
Temporal information extraction (TIE) has attracted a great deal of interest over the last two decades. Such endeavors have led to the development of a significant number of datasets. Despite its benefits, having access to a large volume of corpora makes it difficult to benchmark TIE systems. On the one hand, different datasets have different annotation schemes, which hinders the comparison between competitors across different corpora. On the other hand, the fact that each corpus is disseminated in a different format requires a considerable engineering effort for a researcher/practitioner to develop parsers for all of them. These constraints force researchers to select a limited amount of datasets to evaluate their systems which consequently limits the comparability of the systems. Yet another obstacle to the comparability of TIE systems is the evaluation metric employed. While most research works adopt traditional metrics such as precision, recall, and..1, a few others prefer temporal awareness - a metric tailored to be more comprehensive on the evaluation of temporal systems. Although the reason for the absence of temporal awareness in the evaluation of most systems is not clear, one of the factors that certainly weighs on this decision is the need to implement the temporal closure algorithm, which is neither straightforward to implement nor easily available. All in all, these problems have limited the fair comparison between approaches and consequently, the development of TIE systems. To mitigate these problems, we have developed tieval, a Python library that provides a concise interface for importing different corpora and is equipped with domain-specific operations that facilitate system evaluation. In this paper, we present the first public release of tieval and highlight its most relevant features. The library is available as open source, under MIT License, at PyPI1 and GitHub(2).

2023

A survey on narrative extraction from textual data

Autores
Santana, B; Campos, R; Amorim, E; Jorge, A; Silvano, P; Nunes, S;

Publicação
ARTIFICIAL INTELLIGENCE REVIEW

Abstract
Narratives are present in many forms of human expression and can be understood as a fundamental way of communication between people. Computational understanding of the underlying story of a narrative, however, may be a rather complex task for both linguists and computational linguistics. Such task can be approached using natural language processing techniques to automatically extract narratives from texts. In this paper, we present an in depth survey of narrative extraction from text, providing a establishing a basis/framework for the study roadmap to the study of this area as a whole as a means to consolidate a view on this line of research. We aim to fulfill the current gap by identifying important research efforts at the crossroad between linguists and computer scientists. In particular, we highlight the importance and complexity of the annotation process, as a crucial step for the training stage. Next, we detail methods and approaches regarding the identification and extraction of narrative components, their linkage and understanding of likely inherent relationships, before detailing formal narrative representation structures as an intermediate step for visualization and data exploration purposes. We then move into the narrative evaluation task aspects, and conclude this survey by highlighting important open issues under the domain of narratives extraction from texts that are yet to be explored.

2024

Pre-trained language models: What do they know?

Autores
Guimaraes, N; Campos, R; Jorge, A;

Publicação
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY

Abstract
Large language models (LLMs) have substantially pushed artificial intelligence (AI) research and applications in the last few years. They are currently able to achieve high effectiveness in different natural language processing (NLP) tasks, such as machine translation, named entity recognition, text classification, question answering, or text summarization. Recently, significant attention has been drawn to OpenAI's GPT models' capabilities and extremely accessible interface. LLMs are nowadays routinely used and studied for downstream tasks and specific applications with great success, pushing forward the state of the art in almost all of them. However, they also exhibit impressive inference capabilities when used off the shelf without further training. In this paper, we aim to study the behavior of pre-trained language models (PLMs) in some inference tasks they were not initially trained for. Therefore, we focus our attention on very recent research works related to the inference capabilities of PLMs in some selected tasks such as factual probing and common-sense reasoning. We highlight relevant achievements made by these models, as well as some of their current limitations that open opportunities for further research.This article is categorized under:Fundamental Concepts of Data and Knowledge > Key Design Issues in DataMiningTechnologies > Artificial Intelligence

2023

The Competition on Automatic Classification of Literary Epochs

Autores
Rabaev, I; Litvak, M; Younkin, V; Campos, R; Jorge, AM; Jatowt, A;

Publicação
Proceedings of the IACT - The 1st International Workshop on Implicit Author Characterization from Texts for Search and Retrieval held in conjunction with the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2023), Taipei, Taiwan, July 27, 2023.

Abstract
This paper describes the shared task on Automatic Classification of Literary Epochs (CoLiE) held as a part of the 1st International Workshop on Implicit Author Characterization from Texts for Search and Retrieval (IACT’23) held at SIGIR 2023. The competition aimed to enhance the capabilities of large-scale analysis and cross-comparative studies of literary texts by automating their classification into the respective epochs. We believe that the competition contributed to the field of information retrieval by exposing the first large benchmark dataset and the first study’s results with various methods applied to this dataset. This paper presents the details of the contest, the dataset used, the evaluation procedure, and an overview of participating methods. © 2022 Copyright for this paper by its authors.

2023

TEI2GO: A Multilingual Approach for Fast Temporal Expression Identification

Autores
Sousa, H; Campos, R; Jorge, A;

Publicação
PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023

Abstract
Temporal expression identification is crucial for understanding texts written in natural language. Although highly effective systems such as HeidelTime exist, their limited runtime performance hampers adoption in large-scale applications and production environments. In this paper, we introduce the TEI2GO models, matching HeidelTime's effectiveness but with significantly improved runtime, supporting six languages, and achieving state-of-the-art results in four of them. To train the TEI2GO models, we used a combination of manually annotated reference corpus and developed Professor HeidelTime, a comprehensive weakly labeled corpus of news texts annotated with HeidelTime. This corpus comprises a total of 138, 069 documents (over six languages) with 1, 050, 921 temporal expressions, the largest open-source annotated dataset for temporal expression identification to date. By describing how the models were produced, we aim to encourage the research community to further explore, refine, and extend the set of models to additional languages and domains. Code, annotations, and models are openly available for community exploration and use. The models are conveniently on HuggingFace for seamless integration and application.

2023

Proceedings of the IACT - The 1st International Workshop on Implicit Author Characterization from Texts for Search and Retrieval held in conjunction with the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2023), Taipei, Taiwan, July 27, 2023

Autores
Litvak, M; Rabaev, I; Campos, R; Jorge, AM; Jatowt, A;

Publicação
IACT@SIGIR

Abstract

  • 14
  • 18