Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por José Almeida

2021

Optical Biosensor for the Detection of Hydrogen Peroxide in Milk

Autores
Vasconcelos, H; Matias, A; Jorge, P; Saraiva, C; Mendes, J; Araújo, J; Dias, B; Santos, P; Almeida, JMMM; Coelho, LCC;

Publicação
Chemistry Proceedings

Abstract
Over the years, the food industry’s concern to provide safe food that does not cause harm or illness to consumers has increased. The growing demand for the detection of compounds that can contaminate food is increasingly important. Hydrogen peroxide is frequently used as a substance to control the growth of microorganisms in milk, thus increasing its shelf life. Here, a strategy is presented for the detection of hydrogen peroxide as a milk adulterant, using a single shot membrane sensor. The lowest concentration measured with this technique was 0.002% w/w of H2O2 in semi-fat milk.

2021

Single Fiber Reflectance Spectroscopy for the Monitoring of Cement Paste

Autores
da Silva, PM; Coelho, LCC; Almeida, JMMMD;

Publicação
CHEMOSENSORS

Abstract
Reinforced concrete structures are an essential part of our modern society, and monitoring their structural health is of paramount importance. Early detection of decay allows for the reduction of repair costs and, more importantly, the prevention of catastrophic failure. For this purpose, a single fiber reflectance spectrometer was embedded in cement paste samples for the monitoring of water at the fiber tip through its sensitivity to changes in the refractive index. It monitored the curing of samples with different water-to-cement ratios (w/c), between 0.45 and 0.60, measuring the water exhaust during the hardening of the cement paste. It also measured the capillary coefficient from cement paste samples of 0.50, 0.55 and 0.60 w/c: 0.668 & PLUSMN; 0.002 mm/& RADIC;h, 1.771 & PLUSMN; 0.052 mm/& RADIC;h and 6.360 & PLUSMN; 0.269 mm/& RADIC;h, respectively. The capillary coefficient values agree with gravimetric measurements of sorptivity and are further confirmed through porosity measurements made with a scanning electron microscope. Thus, single fiber reflectance spectroscopy can be a gateway to inexpensively measure the entire life cycle of cement, from its curing until its eventual decay, assessing, in situ, its durability through the capillary coefficient.

2021

Characterization and Comparison of the Relative Humidity Response of Hydromorphic Polymers in Long-Period Fiber Grating Structures

Autores
Dias, B; Mendes, JP; de Almeida, JMMM; Coelho, LCC;

Publicação
Chemistry Proceedings

Abstract
Relative humidity monitorization is of extreme importance on scientific and industrial applications, and fiber optics-based sensors may provide solutions where other types of sensors have limitations. In this work, fiber optics’ sensors were fabricated by combining Long-Period Fiber Gratings with three different humidity-responding polymers, namely Poly(vinyl alcohol), Poly(ethylene glycol) and Hydromed™ D4. The performance of the multiple sensors was experimentally tested and crossed with numerical simulations, which provide a comparison with the expected response given the optical properties of the materials.

2022

Analysis of the Relative Humidity Response of Hydrophilic Polymers for Optical Fiber Sensing

Autores
Dias, B; Carvalho, J; Mendes, JP; Almeida, JMMM; Coelho, LCC;

Publicação
POLYMERS

Abstract
Relative humidity (RH) monitorization is of extreme importance on scientific and industrial applications, and optical fiber sensors (OFS) may provide adequate solutions. Typically, these kinds of sensors depend on the usage of humidity responsive polymers, thus creating the need for the characterization of the optical and expansion properties of these materials. Four different polymers, namely poly(vinyl alcohol), poly(ethylene glycol), Hydromed (TM) D4 and microbiology agar were characterized and tested using two types of optical sensors. First, optical fiber Fabry-Perot (FP) tips were made, which allow the dynamical measurement of the polymers' response to RH variations, in particular of refractive index, film thickness, and critical deliquescence RH. Using both FP tips and Long-Period fiber gratings, the polymers were then tested as RH sensors, allowing a comparison between the different polymers and the different OFS. For the case of the FP sensors, the PEG tips displayed excellent sensitivity above 80%RH, outperforming the other polymers. In the case of LPFGs, the 10% (wt/wt) PVA one displayed excellent sensitivity in a larger working range (60 to 100%RH), showing a valid alternative to lower RH environment sensing.

2022

Study of LSPR Spectral Analysis Techniques on SPR Optical Fiber Sensors

Autores
Dos Santos, PSS; de Almeida, JMMM; Coelho, LCC;

Publicação
U.Porto Journal of Engineering

Abstract
Nanoparticles create localized surface plasmonic resonances (LSPR) with lower surrounding refractive index (SRI) sensitivities than their propagating SPR counterpart, originated in thin films. Historically, LSPR SRI sensitivities enhancements were achieved through spectral analysis methods that focus on unique spectral features. Herein, a study using that methodology was applied on SPR devices resulting in an increased sensitivity to SRI. It was found that by applying the inflection point method on optical fiber SPR sensors resulted in both sensitivity and resolution increments up to 44 and 35 %, respectively, in the SRI range from 1.3333 to 1.4150. Thus, successfully improving sensing capabilities of SPR based optical fiber sensors. © 2022, Universidade do Porto - Faculdade de Engenharia. All rights reserved.

2022

Long-Period Fiber Gratings Coated with Poly(ethylene glycol) as Relative Humidity Sensors

Autores
Dias, B; de Almeida, JMMM; Coelho, LCC;

Publicação
U.Porto Journal of Engineering

Abstract
Relative humidity is an important parameter in controlled environments and is typically monitored using low-cost electrochemical sensors with low resolution and accuracy. This kind of sensors cannot not be implemented in harsh or explosive environments (as in pyrotechnic facilities) due to electrical discharges, or in marine structures where the oxidation of the sensing probe materials changes the sensing response). In these cases, fiber optic sensors can provide solutions due to their intrinsic properties, such as immunity to electromagnetic interference and resistance in harsh environments. This work presents preliminary results regarding the steps of the fabrication of Long-Period Fiber Gratings, the coating processes with a thin layer of poly(ethylene glycol) (PEG) and its sensing performance to relative humidity, displaying a from 60 to 100%sensitivity of 0.6 nm/%RH in the range of 80 to 100%RH. © 2022, Universidade do Porto - Faculdade de Engenharia. All rights reserved.

  • 11
  • 18