2019
Autores
Pereira, CS; Morais, R; Reis, MJCS;
Publicação
SENSORS
Abstract
Frequently, the vineyards in the Douro Region present multiple grape varieties per parcel and even per row. An automatic algorithm for grape variety identification as an integrated software component was proposed that can be applied, for example, to a robotic harvesting system. However, some issues and constraints in its development were highlighted, namely, the images captured in natural environment, low volume of images, high similarity of the images among different grape varieties, leaf senescence, and significant changes on the grapevine leaf and bunch images in the harvest seasons, mainly due to adverse climatic conditions, diseases, and the presence of pesticides. In this paper, the performance of the transfer learning and fine-tuning techniques based on AlexNet architecture were evaluated when applied to the identification of grape varieties. Two natural vineyard image datasets were captured in different geographical locations and harvest seasons. To generate different datasets for training and classification, some image processing methods, including a proposed four-corners-in-one image warping algorithm, were used. The experimental results, obtained from the application of an AlexNet-based transfer learning scheme and trained on the image dataset pre-processed through the four-corners-in-one method, achieved a test accuracy score of 77.30%. Applying this classifier model, an accuracy of 89.75% on the popular Flavia leaf dataset was reached. The results obtained by the proposed approach are promising and encouraging in helping Douro wine growers in the automatic task of identifying grape varieties.
2020
Autores
Adao, T; Soares, A; Padua, L; Guimaraes, N; Pinho, T; Sousa, JJ; Morais, R; Peres, E;
Publicação
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM
Abstract
Developed focusing agriculture sustainability, mySense is a comprehensive close-range sensor-based data management environment to improve precision farming practices. It integrates discussion platforms for quick problem solving through experts support and a computational intelligence layer for multipurpose application (e.g. vine variety discrimination, plant disease detection and identification). Attending the need for keeping track of agricultural crops not only based on close-range sensing but also at a macro perspective, mySense was complemented with proper functionalities to unlock macro-monitoring features, through the implementation of a Web-based Geographical Information System (WebGIS) planned as a sidekick application that provides agriculture professionals with visual decision support tools over remote sensed data. This paper presents and discusses its specification and implementation.
2021
Autores
Santos, LC; dos Santos, FN; Morais, R; Duarte, C;
Publicação
AGRONOMY-BASEL
Abstract
Sap flow measurements of trees are today the most common method to determine evapotranspiration at the tree and the forest/crop canopy level. They provide independent measurements for flux comparisons and model validation. The most common approach to measure the sap flow is based on intrusive solutions with heaters and thermal sensors. This sap flow sensor technology is not very reliable for more than one season crop; it is intrusive and not adequate for low diameter trunk trees. The non-invasive methods comprise mostly Radio-frequency (RF) technologies, typically using satellite or air-born sources. This system can monitor large fields but cannot measure sap levels of a single plant (precision agriculture). This article studies the hypothesis to use of RF signals attenuation principle to detect variations in the quantity of water present in a single plant. This article presents a well-defined experience to measure water content in leaves, by means of high gains RF antennas, spectrometer, and a robotic arm. Moreover, a similar concept is studied with an off-the-shelf radar solution-for the automotive industry-to detect changes in the water presence in a single plant and leaf. The conclusions indicate a novel potential application of this technology to precision agriculture as the experiments data is directly related to the sap flow variations in plant.
2021
Autores
Morais, R; Mendes, J; Silva, R; Silva, N; Sousa, JJ; Peres, E;
Publicação
AGRICULTURE-BASEL
Abstract
Spatial and temporal variability characterization in Precision Agriculture (PA) practices is often accomplished by proximity data gathering devices, which acquire data from a wide variety of sensors installed within the vicinity of crops. Proximity data acquisition usually depends on a hardware solution to which some sensors can be coupled, managed by a software that may (or may not) store, process and send acquired data to a back-end using some communication protocol. The sheer number of both proprietary and open hardware solutions, together with the diversity and characteristics of available sensors, is enough to deem the task of designing a data acquisition device complex. Factoring in the harsh operational context, the multiple DIY solutions presented by an active online community, available in-field power approaches and the different communication protocols, each proximity monitoring solution can be regarded as singular. Data acquisition devices should be increasingly flexible, not only by supporting a large number of heterogeneous sensors, but also by being able to resort to different communication protocols, depending on both the operational and functional contexts in which they are deployed. Furthermore, these small and unattended devices need to be sufficiently robust and cost-effective to allow greater in-field measurement granularity 365 days/year. This paper presents a low-cost, flexible and robust data acquisition device that can be deployed in different operational contexts, as it also supports three different communication technologies: IEEE 802.15.4/ZigBee, LoRa/LoRaWAN and GRPS. Software and hardware features, suitable for using heat pulse methods to measure sap flow, leaf wetness sensors and others are embedded. Its power consumption is of only 83 mu A during sleep mode and the cost of the basic unit was kept below the EUR 100 limit. In-field continuous evaluation over the past three years prove that the proposed solution-SPWAS'21-is not only reliable but also represents a robust and low-cost data acquisition device capable of gathering different parameters of interest in PA practices.
2021
Autores
Carneiro, GS; Pádua, L; Sousa, JJ; Peres, E; Morais, R; Cunha, A;
Publicação
IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2021, Brussels, Belgium, July 11-16, 2021
Abstract
In this paper we present a Deep Learning-based methodology to automatically classify 12 of the most representative grapevarieties existing in the Douro Demarked region, Portugal. The dataset used consisted of images of leaves at different stages of development, collected on their natural environment. The development of such methodologies becomes particularly important, in a scenario in which ampeleographers are disappearing, creating a gap in the task of inspection of grape varieties. Our approach was based on the transfer learning of the Xcepetion model, using Focal Loss, adaptive learning rate decay and SGD. The model obtained a F1 score of 0.93. To clearly understand the predictions of the model, and realize which regions of the image contributed the most to the classification, the LIME library was used. This way it was possible to identify the parts of the images that were considered for and against each prediction.
2022
Autores
Padua, L; Matese, A; Di Gennaro, SF; Morais, R; Peres, E; Sousa, JJ;
Publicação
COMPUTERS AND ELECTRONICS IN AGRICULTURE
Abstract
Vineyard classification is an important process within viticulture-related decision-support systems. Indeed, it improves grapevine vegetation detection, enabling both the assessment of vineyard vegetative properties and the optimization of in-field management tasks. Aerial data acquired by sensors coupled to unmanned aerial vehicles (UAVs) may be used to achieve it. Flight campaigns were conducted to acquire both RGB and multispectral data from three vineyards located in Portugal and in Italy. Red, green, blue and near infrared orthorectified mosaics resulted from the photogrammetric processing of the acquired data. They were then used to calculate RGB and multispectral vegetation indices, as well as a crop surface model (CSM). Three different supervised machine learning (ML) approaches-support vector machine (SVM), random forest (RF) and artificial neural network (ANN)-were trained to classify elements present within each vineyard into one of four classes: grapevine, shadow, soil and other vegetation. The trained models were then used to classify vineyards objects, generated from an object-based image analysis (OBIA) approach, into the four classes. Classification outcomes were compared with an automatic point-cloud classification approach and threshold-based approaches. Results shown that ANN provided a better overall classification performance, regardless of the type of features used. Features based on RGB data showed better performance than the ones based only on multispectral data. However, a higher performance was achieved when using features from both sensors. The methods presented in this study that resort to data acquired from different sensors are suitable to be used in the vineyard classification process. Furthermore, they also may be applied in other land use classification scenarios.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.