2024
Autores
Domingues, JM; Filipe, V; Carita, A; Carvalho, V;
Publicação
INFORMATION
Abstract
This paper explores the intricate interplay between perceived challenge and narrative immersion within role-playing game (RPG) video games, motivated by the escalating influence of game difficulty on player choices. A quantitative methodology was employed, utilizing three specific questionnaires for data collection on player habits and experiences, perceived challenge, and narrative immersion. The study consisted of two interconnected stages: an initial research phase to identify and understand player habits, followed by an in-person intervention involving the playing of three distinct RPG video games. During this intervention, selected players engaged with the chosen RPG video games separately, and after each session, responded to two surveys assessing narrative immersion and perceived challenge. The study concludes that a meticulous adjustment of perceived challenge by video game studios moderately influences narrative immersion, reinforcing the enduring prominence of the RPG genre as a distinctive choice in narrative.
2022
Autores
Ferreira, R; Barroso, J; Filipe, V;
Publicação
Journal of Physics: Conference Series
Abstract
2024
Autores
Loureiro, C; Filipe, V; Franco-Gonçalo, P; Pereira, AI; Colaço, B; Alves-Pimenta, S; Ginja, M; Gonçalves, L;
Publicação
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT II, OL2A 2023
Abstract
Radiography is the primary modality for diagnosing canine hip dysplasia (CHD), with visual assessment of radiographic features sometimes used for accurate diagnosis. However, these features typically constitute small regions of interest (ROI) within the overall image, yet they hold vital diagnostic information and are crucial for pathological analysis. Consequently, automated detection of ROIs becomes a critical preprocessing step in classification or segmentation systems. By correctly extracting the ROIs, the efficiency of retrieval and identification of pathological signs can be significantly improved. In this research study, we employed the most recent iteration of the YOLO (version 8) model to detect hip joints in a dataset of 133 pelvic radiographs. The best-performing model achieved a mean average precision (mAP50:95) of 0.81, indicating highly accurate detection of hip regions. Importantly, this model displayed feasibility for training on a relatively small dataset and exhibited promising potential for various medical applications.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.