Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Carlos Duarte Viveiros

2021

Intensity-modulated refractometer based on mode-mismatch in surface waveguides inscribed by femtosecond laser direct writing

Autores
Amorim, VA; Viveiros, D; Maia, JM; Marques, PVS;

Publicação
OPTICS AND LASER TECHNOLOGY

Abstract
Optical waveguides were fabricated at the surface of Eagle2000 glass substrates, using femtosecond laser direct writing and wet etching, and their potential as intensity-modulated refractometers was assessed. Through the analysis of their broadband spectral response to different refractive index oils, we observed that mode mismatch is present when the guided mode reaches the surface of the substrate and interacts with the external medium, thus enabling the use of such optical waveguides in refractive index sensing. Refractive indices equal to or greater than that of the substrate also induced a coupling mechanism that was shown not to be suitable in these devices. The device's wavelength of operation was found to be tunable by controlling the distance between the surface and the center of the optical waveguide. However, the sensitivity was seen to diminish by increasing the latter, being nonexistent for distances greater than 5.5 mu m. In this study, the maximum sensitivity values were found for a surface to core center distance between 1 and 2 mu m, in the biological range, and 2.5 to 3 mu m, for a refractive index nearing that of the substrate. Accordingly, maximum sensitivities of approximate to 25 dB/RIU and approximate to 1200 dB/RIU were found between 1.300 < n(D)(25)degrees(C) < 1.400 and 1.490 < n(D)(25)degrees(C) < 1.500, respectively.

2021

Effect of Low-Doses of Gamma Radiation on Electric Arc-Induced Long Period Fiber Gratings

Autores
Mesonero Santos, P; Fernandez Medina, A; Coelho, LCC; Viveiros, D; Jorge, PA; Belenguer, T; Heredero, RL;

Publicação
SENSORS

Abstract
This work presents an experimental study on the effects of gamma radiation on Long Period Fiber Gratings (LPFGs) in a low-dose test campaign to evaluate their eventual degradation. The study was carried out with standard single-mode fibers where the grating was inscribed using the Electric-Arc Discharge (EAD) technique. Before the gamma campaign, a detailed optical characterization was performed with repeatability tests to verify the accuracy of the setup and the associated error sources. The gamma-induced changes up to a dose of 200 krad and the recovery after radiation were monitored with the Dip Wavelength Shift (DWS). The results show that the gamma sensitivity for a total dose of 200 krad is 11 pm/krad and a total DWS of 2.3 nm has been observed with no linear dependence. Post-radiation study shows that recovery from radiation-induced wavelength shift is nearly complete in about 4000 h. Experimental results show that the changes suffered under gamma irradiation of these LPFGs are temporary making them a good choice as sensors in space applications.

2021

Loss mechanisms in femtosecond laser written optical waveguides

Autores
Marques, PVS; Amorim, VA; Maia, JM; Viveiros, D;

Publicação
Proceedings of SPIE - The International Society for Optical Engineering

Abstract
Low loss optical waveguides are the key component for the fabrication of more complex integrated optics devices. In most works related to femtosecond laser written waveguides, the values presented give results at a single wavelength or in a narrow wavelength band; but some applications in optical sensing, for example, would benefit from waveguides having good propagation properties in a larger wavelength range. This paper presents results that allow one to gain insight into the major loss mechanisms present in laser written waveguides in two different types of glasses (fused silica and Eagle 2000 glass) and the dependence of those on the fabrication parameters. Finally, an example of application of broadband operating waveguides is given.

2021

Femtosecond laser micromachining of an optofluidics-based monolithic whispering-gallery mode resonator coupled to a suspended waveguide

Autores
Maia, JM; Amorim, VA; Viveiros, D; Marques, PVS;

Publicação
SCIENTIFIC REPORTS

Abstract
A monolithic lab-on-a-chip fabricated by femtosecond laser micromachining capable of label-free biosensing is reported. The device is entirely made of fused silica, and consists of a microdisk resonator integrated inside a microfluidic channel. Whispering gallery modes are excited by the evanescent field of a circular suspended waveguide, also incorporated within the channel. Thermal annealing is performed to decrease the surface roughness of the microstructures to a nanometric scale, thereby reducing intrinsic losses and maximizing the Q-factor. Further, thermally-induced morphing is used to position, with submicrometric precision, the suspended waveguide tangent to the microresonator to enhance the spatial overlap between the evanescent field of both optical modes. With this fabrication method and geometry, the alignment between the waveguide and the resonator is robust and guaranteed at all instances. A maximum sensitivity of 121.5 nm/RIU was obtained at a refractive index of 1.363, whereas near the refractive index range of water-based solutions the sensitivity is 40 nm/RIU. A high Q-factor of 10(5) is kept throughout the entire measurement range.

2021

Turn Around Point Long Period Fiber Gratings With Coupling to Asymmetric Cladding Modes Fabricated by a Femtosecond Laser and Coated With Titanium Dioxide

Autores
Viveiros, D; de Almeida, JMMM; Coelho, L; Vasconcelos, H; Maia, JM; Amorim, VA; Jorge, PAS; Marques, PVS;

Publicação
JOURNAL OF LIGHTWAVE TECHNOLOGY

Abstract
A detailed study of turn around point (TAP) long period fiber gratings (LPFGs) with coupling to the asymmetric cladding modes of a standard single-mode fiber (SMF-28e), fabricated by femtosecond (fs) laser direct writing was realized. The entire fabrication process, including the coating with different titanium dioxide (TiO2) film thicknesses of LPFGs and the corrections needed to achieve coated devices operating precisely in the TAP condition with coupling to the asymmetric cladding modes, was addressed. The significant fabrication details are also given, such as inscription periods, shape and localization of the refractive index modifications across the core. The fabrication process described allows the optimization of the LPFGs sensitivity in regards to the surrounding refractive index (SRI). Optimization of the writing parameters to obtain gratings working at the TAP for two different media surrounding the fiber (water and air) was achieved. It was demonstrated that for a grating period of 191.8 mu m, the LP1,12 mode exhibits a TAP at 1442.7 nm in air, and for a period of 192.5 mu m, the same mode exhibits a TAP at 1448.6 nm in water. The LPFGs operating at the TAP in air and water were coated with 10, 20, and 30 nm thin TiO2 film thicknesses and the spectral behavior characterized. The wavelength sensitivity to the surrounding refractive index (SRI) was assessed in the range between 1.3700 to 1.4120, and a maximum sensitivity of similar to 8051.4 nm/RIU was measured for the 192.5 mu m LPFG coated with a 30 nm thick TiO2 film.

2022

Femtosecond laser micromachining of suspended silica-core liquid-cladding waveguides inside a microfluidic channel

Autores
Maia, JM; Viveiros, D; Amorim, VA; Marques, PVS;

Publicação
OPTICS AND LASERS IN ENGINEERING

Abstract
This work addresses the fabrication of straight silica-core liquid-cladding suspended waveguides inside a microfluidic channel through fs-laser micromachining. These structures enable the reconfiguration of the waveguide's mode profile and enhance the evanescent interaction between light and analyte. Further, their geometry resembles a tapered optical fiber with the added advantage of being monolithically integrated within a microfluidic platform. The fabrication process includes an additional post-processing thermal treatment responsible for smoothening the waveguide surface and reshaping it into a circular cross-section. Suspended waveguides with a minimum core diameter of 3.8 mu m were fabricated. Their insertion losses can be tuned and are mainly affected by mode mismatch between the coupling and suspended waveguides. The transmission spectrum was studied and it was numerically confirmed that it consists of interference between the guided LP01 mode and uncoupled light and of modal interference between the LP01 and LP02 modes.

  • 5
  • 6