Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Bruno Miguel Veloso

2021

Improving Smart Waste Collection Using AutoML

Autores
Teixeira, S; Londres, G; Veloso, B; Ribeiro, RP; Gama, J;

Publicação
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, PT II

Abstract
The production and management of urban waste is a growing challenge and a consequence of our day-to-day resources and activities. According to the Portuguese Environment Agency, in 2019, Portugal produced 1% more tons compared to 2018. The proper management of this waste can be co-substantiated by existing policies, namely, national legislation and the Strategic Plan for Urban Waste. Those policies assess and support the amount of waste processed, allowing the recovery of materials. Among the solutions for waste management is the selective collection of waste. We improve the possibility of manage the smart waste collection of Paper, Plastic, and Glass packaging from corporate customers who joined a recycling program. We have data collected since 2017 until 2020. The main objective of this work is to increase the system's predictive performance, without any loss for citizens, but with improvement in the collection management. We analyze two types of problems: (i) the presence or absence of containers; and (ii) the prediction of the number of containers by type of waste. To carry out the analysis, we applied three machine learning algorithms: XGBoost, Random Forest, and Rpart. Additionally, we also use AutoML for XGBoost and Random Forest algorithms. The results show that with AutoML, generally, it is possible to obtain better results for classifying the presence or absence of containers by type of waste and predict the number of containers.

2022

Simulation, modelling and classification of wiki contributors: Spotting the good, the bad, and the ugly

Autores
Garcia-Mendez, S; Leal, F; Malheiro, B; Burguillo-Rial, JC; Veloso, B; Chis, AE; Gonzalez-Velez, H;

Publicação
SIMULATION MODELLING PRACTICE AND THEORY

Abstract
Data crowdsourcing is a data acquisition process where groups of voluntary contributors feed platforms with highly relevant data ranging from news, comments, and media to knowledge and classifications. It typically processes user-generated data streams to provide and refine popular services such as wikis, collaborative maps, e-commerce sites, and social networks. Nevertheless, this modus operandi raises severe concerns regarding ill-intentioned data manipulation in adver-sarial environments. This paper presents a simulation, modelling, and classification approach to automatically identify human and non-human (bots) as well as benign and malign contributors by using data fabrication to balance classes within experimental data sets, data stream modelling to build and update contributor profiles and, finally, autonomic data stream classification. By employing WikiVoyage - a free worldwide wiki travel guide open to contribution from the general public - as a testbed, our approach proves to significantly boost the confidence and quality of the classifier by using a class-balanced data stream, comprising both real and synthetic data. Our empirical results show that the proposed method distinguishes between benign and malign bots as well as human contributors with a classification accuracy of up to 92%.

2022

PREDICTIVE MAINTENANCE FOR WIND TURBINES

Autores
Sant'Ana, B; Veloso, B; Gama, J;

Publicação
TECHNOLOGIES, MARKETS AND POLICIES: BRINGING TOGETHER ECONOMICS AND ENGINEERING

Abstract
With the greater awareness of climate change, the exponential expansion in the world population's energy needs, and other factors, many countries are producing and using renewable energy sources. However, this type of energy comes with a high cost associated with operation and maintenance. The importance of predictive maintenance in this area is growing, providing valuable insights for strategic decision-making. This paper aims to detect failures in wind turbines early. In our first approach, we considered the Page-Hinkley Test with a sliding window on the different vital components' temperature as a fault detection method. The second approach involved moving averages methods for forecasting the temperature of the different components. Our results showed that both methods could detect failures at least three days before and one day after the failure occurs.

2022

Smart Contracts for the CloudAnchor Platform

Autores
Vasco, E; Veloso, B; Malheiro, B;

Publicação
Advances in Practical Applications of Agents, Multi-Agent Systems, and Complex Systems Simulation. The PAAMS Collection - 20th International Conference, PAAMS 2022, L'Aquila, Italy, July 13-15, 2022, Proceedings

Abstract
CloudAnchor is a multi-agent brokerage platform for the negotiation of Infrastructure as a Service cloud resources between Small and Medium Sized Enterprises, acting either as providers or consumers. This project entails the research, design, and implementation of a smart contract solution to permanently record and manage contractual and behavioural stakeholder data on a blockchain network. Smart contracts enable safe contract code execution, increasing trust between parties and ensuring the integrity and traceability of the chained contents. The defined smart contracts represent the inter-business trustworthiness and Service Level Agreements established within the platform. CloudAnchor interacts with the blockchain network through a dedicated Application Programming Interface, which coordinates and optimises the submission of transactions. The performed tests indicate the success of this integration: (i) the number and value of negotiated resources remain identical; and (ii) the run-time increases due to the inherent latency of the blockchain operation. Nonetheless, the introduced latency does not affect the brokerage performance, proving to be an appropriate solution for reliable partner selection and contractual enforcement between untrusted parties. This novel approach stores all brokerage strategic knowledge in a distributed, decentralised, and immutable database. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2022

Data-Driven Predictive Maintenance

Autores
Gama, J; Ribeiro, RP; Veloso, B;

Publicação
IEEE INTELLIGENT SYSTEMS

Abstract

2022

Interpretable Success Prediction in Higher Education Institutions Using Pedagogical Surveys

Autores
Leal, F; Veloso, B; Pereira, CS; Moreira, F; Durao, N; Silva, NJ;

Publicação
SUSTAINABILITY

Abstract
The indicators of student success at higher education institutions are continuously analysed to increase the students' enrolment in multiple scientific areas. Every semester, the students respond to a pedagogical survey that aims to collect the student opinion of curricular units in terms of content and teaching methodologies. Using this information, we intend to anticipate the success in higher-level courses and prevent dropouts. Specifically, this paper contributes with an interpretable student classification method. The proposed solution relies on (i) a pedagogical survey to collect student's opinions; (ii) a statistical data analysis to validate the reliability of the survey; and (iii) machine learning algorithms to classify the success of a student. In addition, the proposed method includes an explainable mechanism to interpret the classifications and their main factors. This transparent pipeline was designed to have implications in both digital and sustainable education, impacting the three pillars of sustainability, i.e.,economic, social, and environmental, where transparency is a cornerstone. The work was assessed with a dataset from a Portuguese higher-level institution, contemplating multiple courses from different departments. The most promising results were achieved with Random Forest presenting 98% in accuracy and F-measure.

  • 8
  • 14