Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Bruno Miguel Veloso

2022

Humans Versus Machines: The Perspective of Two Different Approaches in Classification for Ethical Design

Autores
Teixeira, S; Rodrigues, J; Veloso, B; Gama, J;

Publicação
ERCIM NEWS

Abstract
This Portuguese project compares the classification of AI risks and vulnerabilities performed by humans and performed by the computing algorithms.

2020

Interconnect bypass fraud detection: a case study

Autores
Veloso, B; Tabassum, S; Martins, C; Espanha, R; Azevedo, R; Gama, J;

Publicação
ANNALS OF TELECOMMUNICATIONS

Abstract
The high asymmetry of international termination rates is fertile ground for the appearance of fraud in telecom companies. International calls have higher values when compared with national ones, which raises the attention of fraudsters. In this paper, we present a solution for a real problem called interconnect bypass fraud, more specifically, a newly identified distributed pattern that crosses different countries and keeps fraudsters from being tracked by almost all fraud detection techniques. This problem is one of the most expressive in the telecommunication domain, and it has some abnormal behaviours like the occurrence of a burst of calls from specific numbers. Based on this assumption, we propose the adoption of a new fast forgetting technique that works together with the Lossy Counting algorithm. We apply frequent set mining to capture distributed patterns from different countries. Our goal is to detect as soon as possible items with abnormal behaviours, e.g., bursts of calls, repetitions, mirrors, distributed behaviours and a small number of calls spread by a vast set of destination numbers. The results show that the application of different techniques improves the detection ratio and not only complements the techniques used by the telecom company but also improves the performance of the Lossy Counting algorithm in terms of run-time, memory used and sensibility to detect the abnormal behaviours. Additionally, the application of frequent set mining allows us to capture distributed fraud patterns.

2021

Responsible processing of crowdsourced tourism data

Autores
Leal, F; Malheiro, B; Veloso, B; Burguillo, JC;

Publicação
JOURNAL OF SUSTAINABLE TOURISM

Abstract
Online tourism crowdsourcing platforms, such as AirBnB, Expedia or TripAdvisor, rely on the continuous data sharing by tourists and businesses to provide free or paid value-added services. When adequately processed, these data streams can be used to explain and support businesses in the early identification of trends as well as prospective tourists in obtaining tailored recommendations, increasing the confidence in the platform and empowering further end-users. However, existing platforms still do not embrace the desired accountability, responsibility and transparency (ART) design principles, underlying to the concept of sustainable tourism. The objective of this work is to study this problem, identify the most promising techniques which follow these principles and design a novel ART-compliant processing pipeline. To this end, this work surveys: (i) real-time data stream mining techniques for recommendation and trend identification; (ii) trust and reputation (T&R) modelling of data contributors; (iii) chained-based storage of trust models as smart contracts for traceability and authenticity; and (iv) trust- and reputation-based explanations for a transparent and satisfying user experience. The proposed pipeline redesign has implications both to digital and to sustainable tourism since it advances the current processing of tourism crowdsourcing platforms and impacts on the three pillars of sustainable tourism.

2022

An Exploratory Diagnosis of Artificial Intelligence Risks for a Responsible Governance

Autores
Teixeira, S; Rodrigues, J; Veloso, B; Gama, J;

Publicação
15th International Conference on Theory and Practice of Electronic Governance, ICEGOV 2022, Guimarães, Portugal, October 4-7, 2022

Abstract
Our lives have been increasingly filled with technologies that use Artificial Intelligence (AI), whether at home, in public spaces, in social organizations, or in services. Like other technologies, adopting this emerging technology also requires society's attention to the challenges that may arise from it. The media brought to the public some unexpected results from using these technologies, for example, the unfairness case in the COMPAS system. It became more evident that these technologies can have unintended consequences. In particular, in the public interest domain, these unintended consequences and their origin are a challenge for public policies, governance, and responsible AI. This work aims to identify the technological and ethical risks in data-driven decision systems based on AI and conduct a diagnosis of these risks and their perception. To do that, we use a triangulation of methods. In the first stage, a search on Web of Science has been performed. We consider all the 412 papers. The second stage corresponds to a analysis of experts. The papers have been classified according to the relevance to the topic by the experts. In the third stage, we use the survey method and include risk insights from stage two in our questions. We found 24 concerns which arise from the perspective of the ethical and technological risk perspective. The perception of participants regarding the level of concern they have with the risks of a data-driven system based on AI is high than their perception of society's concern. Fairness is considered the risk whose perception is more severe. Fairness, Bias, Accountability, Interpretability, and Explainability are considered the most relevant concepts for a responsible AI. Consequently, also the most relevant for responsible governance of AI. © 2022 ACM.

2022

Challenges of Data-Driven Decision Models: Implications for Developers and for Public Policy Decision-Makers

Autores
Teixeira, S; Rodrigues, JC; Veloso, B; Gama, J;

Publicação
Advances in Urban Design and Engineering

Abstract

2023

Online Anomaly Explanation: A Case Study on Predictive Maintenance

Autores
Ribeiro, RP; Mastelini, SM; Davari, N; Aminian, E; Veloso, B; Gama, J;

Publicação
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II

Abstract
Predictive Maintenance applications are increasingly complex, with interactions between many components. Black-box models are popular approaches due to their predictive accuracy and are based on deep-learning techniques. This paper presents an architecture that uses an online rule learning algorithm to explain when the black-box model predicts rare events. The system can present global explanations that model the black-box model and local explanations that describe why the black-box model predicts a failure. We evaluate the proposed system using four real-world public transport data sets, presenting illustrative examples of explanations.

  • 9
  • 14