2014
Autores
Correia, A; Cassola, F; Azevedo, D; Pinheiro, A; Morgado, L; Martins, P; Fonseca, B; Paredes, H;
Publicação
Journal For Virtual Worlds Research
Abstract
2020
Autores
Iria, J; Fonseca, N; Cassola, F; Barbosa, A; Soares, F; Coelho, A; Ozdemir, A;
Publicação
ENERGY AND BUILDINGS
Abstract
Office buildings consume a significant amount of energy that can be reduced through behavioral change. Gamification offers the means to influence the energy consumption related to the activities of the office users. This paper presents a new mobile gamification platform to foster the adoption of energy efficient behaviors in office buildings. The gamification platform is a mobile application with multiple types of dashboards, such as (1) an information dashboard to increase the awareness of the users about their energy consumption and footprint, (2) a gaming dashboard to engage users in real-time energy efficiency competitions, (3) a leaderboard to promote peer competition and comparison, and (4) a message dashboard to send tailor-made messages about energy efficiency opportunities. The engagement and gamification strategies embedded in these dashboards exploit economic, environmental, and social motivations to stimulate office users to adopt energy efficient behaviors without compromising their comfort and autonomy levels. The gamification platform was demonstrated in an office building environment. The results suggest electricity savings of 20%. © 2020 Elsevier B.V.
2021
Autores
Soares, F; Madureira, A; Pages, A; Barbosa, A; Coelho, A; Cassola, F; Ribeiro, F; Viana, J; Andrade, J; Dorokhova, M; Morais, N; Wyrsch, N; Sorensen, T;
Publicação
ENERGIES
Abstract
Energy efficiency in buildings can be enhanced by several actions: encouraging users to comprehend and then adopt more energy-efficient behaviors; aiding building managers in maximizing energy savings; and using automation to optimize energy consumption, generation, and storage of controllable and flexible devices without compromising comfort levels and indoor air-quality parameters. This paper proposes an integrated Information and communications technology (ICT) based platform addressing all these factors. The gamification platform is embedded in the ICT platform along with an interactive energy management system, which aids interested stakeholders in optimizing "when and at which rate" energy should be buffered and consumed, with several advantages, such as reducing peak load, maximizing local renewable energy consumption, and delivering more efficient use of the resources available in individual buildings or blocks of buildings. This system also interacts with an automation manager and a users' behavior predictor application. The work was developed in the Horizon 2020 FEEdBACk (Fostering Energy Efficiency and BehAvioral Change through ICT) project.
2021
Autores
Cassola, F; Pinto, M; Mendes, D; Morgado, L; Coelho, A; Paredes, H;
Publicação
2021 IEEE CONFERENCE ON VIRTUAL REALITY AND 3D USER INTERFACES ABSTRACTS AND WORKSHOPS (VRW 2021)
Abstract
Training in VR can reduce risks and costs while allowing frequent and diversified experiential learning activities. We present a novel VR immersive authoring tool for experiential learning courses with industrial machinery. A trainer can create a course from scratch, defining all its components (structure, models, tools, and settings). The actions which trainees should perform can be specified by demonstration. After completing the course, trainees' actions will be matched against the trainer's.
2021
Autores
Cassola, F; Pinto, M; Mendes, D; Morgado, L; Coelho, A; Paredes, H;
Publicação
2021 IEEE CONFERENCE ON VIRTUAL REALITY AND 3D USER INTERFACES ABSTRACTS AND WORKSHOPS (VRW 2021)
Abstract
The use of VR in industrial training contributes to reduce costs and risks, supporting more frequent and diversified use of experiential learning activities, an approach with proven results. In this work, we present an innovative immersive authoring tool for experiential learning in VR-based training. It enables a trainer to structure an entire VR training course in an immersive environment, defining its sub-components, models, tools, and settings, as well as specifying by demonstration the actions to be performed by trainees. The trainees performing the immersive training course have their actions recorded and matched to the ones specified by the trainer.
2022
Autores
Cassola, F; Mendes, D; Pinto, M; Morgado, L; Costa, S; Anjos, L; Marques, D; Rosa, F; Maia, A; Tavares, H; Coelho, A; Paredes, H;
Publicação
IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES
Abstract
The use of virtual reality (VR) for industrial training helps minimize risks and costs by allowing more frequent and varied use of experiential learning activities, leading to active and improved learning. However, creating VR training experiences is costly and time-consuming, requiring software development experts. Additionally, current authoring tools lack integration with existing data and are desktop-oriented, which detach the pedagogic process of creating the immersive experience from experiencing it in a situated context. In this article, we present a novel interactive approach for immersive authoring of VR-based experiential training by the trainers themselves, from inside the virtual environment and without the support of development experts. The design includes identifying interactable elements, such as 3-D models, equipment, tools, settings, and environment. The trainer also specifies by demonstration the actions to be performed by trainees, as a virtual choreography. During course execution, trainees' activities are also registered as virtual choreographies and matched to those specified by the trainer. Thus, trainer and trainee are culturally situated within their area semantics and social discourse, rather than adopting concepts of the VR system for the learning content. We conducted a usability case study with professionals from an international wind energy company, using detailed models of wind turbines and real-world procedures. Trainers set up a training course using the immersive authoring tool, and trainees executed the course. The learning experience and usability were analyzed, and the training was certified by comparing real-world task completion between a user who had undergone virtual training and a user who did not.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.