Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Pedro Amorim

2020

Cooperative coevolution of expressions for (r,Q) inventory management policies using genetic programming

Autores
Lopes, RL; Figueira, G; Amorim, P; Almada Lobo, B;

Publicação
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH

Abstract
There are extensive studies in the literature about the reorder point/order quantity policies for inventory management, also known as policies. Over time different algorithms have been proposed to calculate the optimal parameters given the demand characteristics and a fixed cost structure, as well as several heuristics and meta-heuristics that calculate approximations with varying accuracy. This work proposes a new meta-heuristic that evolves closed-form expressions for both policy parameters simultaneously - Cooperative Coevolutionary Genetic Programming. The implementation used for the experimental work is verified with published results from the optimal algorithm, and a well-known hybrid heuristic. The evolved expressions are compared to those algorithms, and to the expressions of previous Genetic Programming approaches available in the literature. The results outperform the previous closed-form expressions and demonstrate competitiveness against numerical methods, reaching an optimality gap of less than , while being two orders of magnitude faster. Moreover, the evolved expressions are compact, have good generalisation capabilities, and present an interesting structure resembling previous heuristics.

2019

Tackling perishability in multi-level process industries

Autores
Wei, WC; Amorim, P; Guimaraes, L; Almada Lobo, B;

Publicação
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH

Abstract
The classical multi-level lot-sizing and scheduling problem formulations for process industries rarely address perishability issues, such as limited shelf lives of intermediate products. In some industries, ignoring this specificity may result in severe losses. In this paper, we start by extending a classical multi-level lot-sizing and scheduling problem formulation (MLGLSP) to incorporate perishability issues. We further demonstrate that with the objective of minimising the total costs (purchasing, inventory and setup), the production plans generated by classical models are often infeasible under a setting with perishable products. The model distinguishes different perishability characteristics of raw materials, intermediates and end products according to various industries. Finally, we provide quantitative insights on the importance of considering perishability for different production settings when solving integrated production planning and scheduling problems.

2020

Solving the grocery backroom sizing problem

Autores
Pires, M; Camanho, A; Amorim, P;

Publicação
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH

Abstract
Backrooms are an important echelon of the retail supply chain. However, research focus has been mostly targeted to optimise both distribution centres and stores' sales area. In this paper, we propose two mathematical programming formulations to solve the grocery backroom sizing problem. This problem consists of determining the dimension of each storage department in the backroom area to optimise its overall efficiency. The first formulation is a bottom-up approach that aims to reduce the backroom life-cycle costs by determining the optimum floor space and storage height for each department. The second is a top-down approach based on Data Envelopment Analysis (DEA), which determines the efficient level of storage floor space for each backroom department, based on a comparison with the benchmarks observed among existing stores. Each approach has distinct characteristics that turn the models suitable for different retail contexts. We also describe the application of the proposed approaches to a case study of a European retailer. The application of this methodology in the design process demonstrated substantial potential for space savings (6% for the bottom-up model and 16% for the top-down model). This space reduction should either allow higher revenues in the sales area and/or lower backroom-related costs.

2020

Production scheduling in the context of Industry 4.0: review and trends

Autores
Parente, M; Figueira, G; Amorim, P; Marques, A;

Publicação
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH

Abstract
Notwithstanding its disruptive potential, which has been the object of considerable debate, Industry4.0 (I4.0) operationalisation still needs significant study. Specifically, scheduling is a key process that should be explored from this perspective. The purpose of this study is to shed light on the issues regarding scheduling that need to be considered in the new I4.0 framework. To achieve this, a two-stage cascade literature review is performed. The review begins with an analysis regarding the opportunities and challenges brought by I4.0 to the scheduling field, outputting a set of critical scheduling areas (CSA) in which development is essential. The second-stage literature review is performed to understand which steps have been taken so far by previous research in the scheduling field to address those challenges. Thus, a first contribution of this work is to provide insight on the influence and expected changes brought by I4.0 to scheduling, while showcasing relevant research. Another contribution is to identify the most promising future lines of research in this field, in which relevant challenges such as holistic scheduling, or increased flexibility requirements are highlighted. Concurrently, CSA such as decentralised decision-making, and human-robot collaboration display large gaps between current practice and the required technological level of development.

2020

The multi-period vehicle routing problem with refueling decisions: Traveling further to decrease fuel cost?

Autores
Neves Moreira, F; Amorim Lopes, M; Amorim, P;

Publicação
TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW

Abstract
Most vehicle routing approaches disregard the need to refuel fleets. However, planners search for opportunities to refuel at lower prices even if, counter-intuitively, distant fuel stations need to be visited. We propose a novel mathematical formulation and develop branch-and-cut and matheuristic algorithms to efficiently tackle this problem. Results indicate that, to minimize costs, detour distances may increase up to 6 percentage points when fuel stations with lower prices are farther away from the depot. For practice, these insights imply that current policies disregarding station location and/or fuel prices along with "myopic" planning horizons may lead to sub-optimal decisions.

2020

Integrated planning of inbound and outbound logistics with a Rich Vehicle Routing Problem with backhauls

Autores
Marques, A; Soares, R; Santos, MJ; Amorim, P;

Publicação
OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE

Abstract
This paper addresses the integration of the planning decisions concerning inbound logistics in an industrial setting (from the suppliers to the mill) and outbound logistics (from the mill to customers). The goal is to find the minimum cost routing plan, which includes the cost-effective outbound and inbound daily routes (OIRs), consisting of a sequence of deliveries of customer orders, pickup of a full truck-load at a supplier, and its delivery to the mill. This study distinguishes between three planning strategies: opportunistic backhauling planning (OBP), integrated inbound and outbound planning (IIOP) and decoupled planning (DIOP), the latter being the commonly used, particularly in the case of the wood-based panel industry under study. From the point of view of process integration, OBP can be considered as an intermediate stage from DIOP to IIOP. The problem is modelled as a Vehicle Routing Problem with Backhauls, enriched with case-specific rules for visiting the backhaul, split deliveries to customers and the use of a heterogeneous fleet. A new fix-and-optimise matheuristic is proposed for this problem, seeking to obtain good quality solutions within a reasonable computational time. The results from its application to the wood-based panel industry in Portugal show that IIOP can help to reduce total costs in about 2.7%, when compared with DIOP, due to better use of the delivery truck and a reduction of the number of dedicated inbound routes. Regarding OBP, fostering the use of OIRs does not necessarily lead to better routing plans than DIOP, as it depends upon a favourable geographical configuration of the set of customers to be visited in a day, specifically, the relative distance between a linehaul that can be visited last in a route, a neighboring backhaul, and a mill. The paper further provides valuable managerial insights on how the routing plan is impacted by the values of business-related model parameters which are set by the planner with some degree of uncertainty. Results suggest that increasing the maximum length of the route will likely have the largest impact in reducing transportation costs. Moreover, increasing the value of a reward paid for visiting a backhaul can foster the percentage of OIR in the optimal routing plan.

  • 7
  • 15