Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Tatiana Martins Pinho

2019

Digital Ampelographer: A CNN Based Preliminary Approach

Autores
Adão, T; Pinho, TM; Ferreira, A; Sousa, AMR; Pádua, L; Sousa, J; Sousa, JJ; Peres, E; Morais, R;

Publicação
Progress in Artificial Intelligence - 19th EPIA Conference on Artificial Intelligence, EPIA 2019, Vila Real, Portugal, September 3-6, 2019, Proceedings, Part I

Abstract
Authenticity, traceability and certification are key to assure both quality and confidence to wine consumers and an added commercial value to farmers and winemakers. Grapevine variety stands out as one of the most relevant factors to be considered in wine identification within the whole wine sector value chain. Ampelography is the science responsible for grapevine varieties identification based on (i) in-situ visual inspection of grapevine mature leaves and (ii) on the ampelographer experience. Laboratorial analysis is a costly and time-consuming alternative. Both the lack of experienced professionals and context-induced error can severely hinder official regulatory authorities’ role and therefore bring about a significant impact in the value chain. The purpose of this paper is to assess deep learning potential to classify grapevine varieties through the ampelometric analysis of leaves. Three convolutional neural networks architectures performance are evaluated using a dataset composed of six different grapevine varieties leaves. This preliminary approach identified Xception architecture as very promising to classify grapevine varieties and therefore support a future autonomous tool that assists the wine sector stakeholders, particularly the official regulatory authorities. © Springer Nature Switzerland AG 2019.

2019

Cyberphysical Network for Crop Monitoring and Fertigation Control

Autores
Coelho, JP; Rosse, HV; Boaventura Cunha, J; Pinho, TM;

Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2019, PT I

Abstract
The most current forecasts point to a decrease in the amount of potable water available. This increase in water scarcity is a problem with which sustainable agricultural production is facing. This has led to an increasing search for technical solutions in order to improve the efficiency of irrigation systems. In this context, this work describes the architecture of an agent-based network and the cyberphysical elements which will be deployed in a strawberry fertigation production plant. The operation of this architecture relies on local information provided by LoRA based wireless sensor network that is described in this paper. Using the information provided by the array of measurement nodes, cross-referenced with local meteorological data, grower experience and the actual crop vegetative state, it will be possible to better define the amount of required irrigation solution and then to optimise the water usage. © Springer Nature Switzerland AG 2019.

2020

Review of nature and biologically inspired metaheuristics for greenhouse environment control

Autores
Oliveira, PM; Pires, EJS; Boaventura Cunha, J; Pinho, TM;

Publicação
TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL

Abstract
A significant number of search and optimisation techniques whose principles seek inspiration from nature and biology phenomena have been proposed in the last decades. These methods have been successfully applied to solve a wide range of engineering problems. This is also the case of greenhouse environment control, which has been incorporating this type of techniques into its design. This paper addresses evolutionary and bio-inspired methods in the context of greenhouse environment control. Algorithm principles for reference techniques are reviewed, namely: simulated annealing, genetic algorithm, differential evolution and particle swarm optimisation. The last three techniques are considered using single and multiple objective formulations. A review of these algorithms within greenhouse environment control applications is presented, considering single and multiple objective problems, as well as their current trends.

2020

Evaluation of Hunting-Based Optimizers for a Quadrotor Sliding Mode Flight Controller

Autores
Oliveira, J; Oliveira, PM; Boaventura Cunha, J; Pinho, T;

Publicação
ROBOTICS

Abstract
The design of Multi-Input Multi-Output nonlinear control systems for a quadrotor can be a difficult task. Nature inspired optimization techniques can greatly improve the design of non-linear control systems. Two recently proposed hunting-based swarm intelligence inspired techniques are the Grey Wolf Optimizer (GWO) and the Ant Lion Optimizer (ALO). This paper proposes the use of both GWO and ALO techniques to design a Sliding Mode Control (SMC) flight system for tracking improvement of altitude and attitude in a quadrotor dynamic model. SMC is a nonlinear technique which requires that its strictly coupled parameters related to continuous and discontinuous components be correctly adjusted for proper operation. This requires minimizing the tracking error while keeping the chattering effect and control signal magnitude within suitable limits. The performance achieved with both GWO and ALO, considering realistic disturbed flight scenarios are presented and compared to the classical Particle Swarm Optimization (PSO) algorithm. Simulated results are presented showing that GWO and ALO outperformed PSO in terms of precise tracking, for ideal and disturbed conditions. It is shown that the higher stochastic nature of these hunting-based algorithms provided more confidence in local optima avoidance, suggesting feasibility of getting a more precise tracking for practical use.

2020

Smartphone Applications Targeting Precision Agriculture Practices-A Systematic Review

Autores
Mendes, J; Pinho, TM; dos Santos, FN; Sousa, JJ; Peres, E; Boaventura Cunha, J; Cunha, M; Morais, R;

Publicação
AGRONOMY-BASEL

Abstract
Traditionally farmers have used their perceptual sensorial systems to diagnose and monitor their crops health and needs. However, humans possess five basic perceptual systems with accuracy levels that can change from human to human which are largely dependent on the stress, experience, health and age. To overcome this problem, in the last decade, with the help of the emergence of smartphone technology, new agronomic applications were developed to reach better, cost-effective, more accurate and portable diagnosis systems. Conventional smartphones are equipped with several sensors that could be useful to support near real-time usual and advanced farming activities at a very low cost. Therefore, the development of agricultural applications based on smartphone devices has increased exponentially in the last years. However, the great potential offered by smartphone applications is still yet to be fully realized. Thus, this paper presents a literature review and an analysis of the characteristics of several mobile applications for use in smart/precision agriculture available on the market or developed at research level. This will contribute to provide to farmers an overview of the applications type that exist, what features they provide and a comparison between them. Also, this paper is an important resource to help researchers and applications developers to understand the limitations of existing tools and where new contributions can be performed.

2020

MYSENSE-WEBGIS: A GRAPHICAL MAP LAYERING-BASED DECISION SUPPORT TOOL FOR AGRICULTURE

Autores
Adao, T; Soares, A; Padua, L; Guimaraes, N; Pinho, T; Sousa, JJ; Morais, R; Peres, E;

Publicação
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM

Abstract
Developed focusing agriculture sustainability, mySense is a comprehensive close-range sensor-based data management environment to improve precision farming practices. It integrates discussion platforms for quick problem solving through experts support and a computational intelligence layer for multipurpose application (e.g. vine variety discrimination, plant disease detection and identification). Attending the need for keeping track of agricultural crops not only based on close-range sensing but also at a macro perspective, mySense was complemented with proper functionalities to unlock macro-monitoring features, through the implementation of a Web-based Geographical Information System (WebGIS) planned as a sidekick application that provides agriculture professionals with visual decision support tools over remote sensed data. This paper presents and discusses its specification and implementation.

  • 5
  • 7