Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Pedro Jorge

2019

Optical Fiber Anemometer Based on a Multi-FBG Curvature Sensor

Autores
Fujiwara, E; Hayashi, JG; Delfino, TD; Jorge, PAS; de Barros Cordeiro, CMD;

Publicação
IEEE SENSORS JOURNAL

Abstract
An optical fiber anemometer based on a flexible multi-FBG curvature sensor is reported. The probe is comprised of a structured polymer shell with embedded single-mode fibers with written fiber Bragg gratings. When the sensor is bent, the different spectral shift of the Bragg wavelengths allows the determination of the mechanical stimulus. Moreover, the probe was also used as a cantilever sensor for assessing the airflow speed in a wind tunnel. The sensor presented sensitivities of 0.8 nm/m(-1) and 1.05 pm/(m/s) for curvature and square speed measurements, respectively, and the sensing characteristics can be improved by simply changing the material and the geometry of the bulk polymer shell, providing a versatile and feasible probe for the mechanical and flow measurements.

2019

Optical Sensing of Nitrogen, Phosphorus and Potassium: A Spectrophotometrical Approach toward Smart Nutrient Deployment

Autores
Monteiro Silva, F; Jorge, PAS; Martins, RC;

Publicação
CHEMOSENSORS

Abstract
The feasibility of a compact, modular sensing system able to quantify the presence of nitrogen, phosphorus and potassium (NPK) in nutrient-containing fertilizer water was investigated. Direct UV-Vis spectroscopy combined with optical fibers were employed to design modular compact sensing systems able to record absorption spectra of nutrient solutions resulting from local producer samples. N, P, and K spectral interference was studied by mixtures of commercial fertilizer solutions to simulate real conditions in hydroponic productions. This study demonstrates that the use of bands for the quantification of nitrogen with linear or logarithmic regression models does not produce analytical grade calibrations. Furthermore, multivariate regression models, i.e., Partial Least Squares (PLS), which consider specimens interference, perform poorly for low absorbance nutrients. The high interference present in the spectra has proven to be solved by an innovative self-learning artificial intelligence algorithm that is able to find interference modes among a spectral database to produce consistent predictions. By correctly modeling the existing interferences, analytical grade quantification of N, P, and K has proven feasible. The results of this work open the possibility of real-time NPK monitoring in Micro-Irrigation Systems.

2019

Dissolved Carbon Dioxide Sensing Platform for Freshwater and Saline Water Applications: Characterization and Validation in Aquaculture Environments

Autores
Mendes, JP; Coelho, L; Kovacs, B; de Almeida, JMMM; Pereira, CM; Jorge, PAS; Borges, MT;

Publicação
SENSORS

Abstract
A sensing configuration for the real-time monitoring, detection, and quantification of dissolved carbon dioxide (dCO(2)) was developed for aquaculture and other applications in freshwater and saline water. A chemical sensing membrane, based on a colorimetric indicator, is combined with multimode optical fiber and a dual wavelength light-emitting diode (LED) to measure the dCO(2)-induced absorbance changes in a self-referenced ratiometric scheme. The detection and processing were achieved with an embeded solution having a mini spectrometer and microcontroller. For optrode calibration, chemical standard solutions using sodium carbonate in acid media were used. Preliminary results in a laboratory environment showed sensitivity for small added amounts of CO2 (0.25 mg.L-1). Accuracy and response time were not affected by the type of solution, while precision was affected by salinity. Calibration in freshwater showed a limit of detection (LOD) and a limit of quantification (LOQ) of 1.23 and 1.87 mg.L-1, respectively. Results in saline water (2.5%) showed a LOD and LOQ of 1.05 and 1.16 mg.L-1, respectively. Generally, performance was improved when moving from fresh to saline water. Studies on the dynamics of dissolved CO2 in a recirculating shallow raceway system (SRS+RAS) prototype showed higher precision than the tested commercial sensor. The new sensor is a compact and robust device, and unlike other sensors used in aquaculture, stirring is not required for correct and fast detection. Tests performed showed that this new sensor has a fast accurate detection as well as a strong potential for assessing dCO(2) dynamics in aquaculture applications.

2019

Preliminary Study for Detection of Hydrogen Peroxide Using a Hydroxyethyl Cellulose Membrane

Autores
Vasconcelos, H; Almeida, JMMMd; Saraiva, C; Jorge, PAS; Coelho, L;

Publicação
Proceedings

Abstract
High concentration of biogenic amines (BA) is an indicator of deterioration of food and the determination of their concentration is an important method of food control. The hydrogen peroxide (H2O2) is a side product of the degradation of BAs by certain enzymes. It is presented an experimental technique grounded on chemiluminescence to measure small quantities of H2O2 with concentrations as low as 0.01%w/w up to 0.08%w/w. Luminol and cobalt hydroxide are added to hydroxyethyl cellulose to obtain an active membrane which will react with the sampling solution and the amount of total light emission is directly related to the H2O2 concentration.

2019

Application of a novel LIBS prototype as an analytical grade tool for Li quantification in pegmatite samples

Autores
Guimaraes, D; Ferreira, MFS; Ribeiro, R; Dias, C; Lima, A; Martins, RC; Jorge, PAS;

Publicação
FOURTH INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS

Abstract
A high-resolution advanced laser induced breakdown spectroscopy prototype was used to quantify lithium (Li) in lithiniferous rocks. Samples were collected from Barroso's mine (Portugal), claimed as Western Europe's largest spodumene Li discovery. 51 samples from a reverse circulation drill were collected, one for each meter interval, dried, milled, pressed into pellets and further analyzed by laser induced breakdown spectroscopy. Quantification was attempted using either linear models based on the intensity of selected Li spectral lines or advanced chemometrics methods. The latter was very successful, with correlation coefficients of 0.97 against certified laboratory results.

2019

Fabrication of periodic structures in optical fibers by femtosecond laser micromachining for sensing applications

Autores
Viveiros, D; Maia, JM; Amorim, VA; Jorge, PAS; Marques, PVS;

Publicação
FOURTH INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS

Abstract
A femtosecond laser direct writing system was developed to explore the fabrication of periodic structures in optical fibers. The possibility to write type I first- and second-order Bragg gratings in the same single-mode fiber (SMF-28e), with reflectivities of 99.6 % and 59.3 %, respectively, is presented. The fabrication of structures (waveguides and grating) in a coreless and in a SMF-28e fiber was first demonstrated, and the gratings were then exposed to a thermal annealing up to 1000 degrees C. The FBG inscribed in the SMF-28e fiber presents thermal stability at temperatures of 800 degrees C and a temperature sensitivity of 14.34 pm/degrees C was determined.

  • 18
  • 43