Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Pedro Jorge

2012

Intrinsic Fabry-Perot Cavity Sensor Based on Etched Multimode Graded Index Fiber for Strain and Temperature Measurement

Autores
Tafulo, PAR; Jorge, PAS; Santos, JL; Araujo, FM; Frazao, O;

Publicação
IEEE SENSORS JOURNAL

Abstract
Two Fabry-Perot interferometers based on chemical etching in multimode graded index fibers are fabricated and their response to temperature and strain are compared. Chemical etching is applied in the graded index fiber end creating an air cavity. The interferometric cavity is formed when the graded index fiber with the air concavity is spliced to a single-mode fiber. The intrinsic sensors present high sensitivity to strain and low sensitivity to temperature. For the 62.5 mu m core fiber, sensitivities of 6.99 pm/mu epsilon and, 0.95 pm/degrees C were obtained for strain and temperature, respectively. The sensor based in the 50 mu m core fiber, on the other hand, presented sensitivities of 4.06 pm/mu epsilon and -0.84 pm/degrees C for strain and temperature, respectively.

2012

Curvature and Temperature Discrimination Using Multimode Interference Fiber Optic Structures-A Proof of Concept

Autores
Silva, S; Pachon, EGP; Franco, MAR; Jorge, P; Santos, JL; Xavier Malcata, FX; Cordeiro, CMB; Frazao, O;

Publicação
JOURNAL OF LIGHTWAVE TECHNOLOGY

Abstract
Singlemode-multimode-singlemode fiber structures (SMS) based on distinct sections of a pure silica multimode fiber (coreless-MMF) with diameters of 125 and 55 mu m, were reported for the measurement of curvature and temperature. The sensing concept relies on the multimode interference that occurs in the coreless-MMF section and, in accordance with the length of the MMF section used, two fiber devices were developed: one based on a bandpass filter (self-image effect) and the other on a band-rejection filter. Maximum sensitivities of 64.7 nm.m and 13.08 pm/degrees C could be attained, for curvature and temperature, respectively, using the band-rejection filter with 55 mu m-MMF diameter. A proof of concept was also explored for the simultaneous measurement of curvature and temperature by means of the matrix method.

2009

Geometrical effects on the refractive index sensitivity of Mach-Zehnder fibre modal interferometers based on long-period gratings

Autores
Caldas, P; Jorge, PAS; Araujo, FM; Ferreira, LA; Rego, G; Santos, JL;

Publicação
MEASUREMENT SCIENCE & TECHNOLOGY

Abstract
In this work a modal interferometer based on arc-induced long-period gratings (LPGs) in a Mach-Zehnder configuration is evaluated as a sensing structure for environmental refractive index measurement. To interrogate this sensing device, coherence addressing and pseudo-heterodyne processing were used. The influence of geometric effects such as stretching, bending and twisting the interferometer on the sensitivity to refractive index changes was studied. It is shown that due to the antisymmetric nature of cladding modes in arc-induced LPGs, it is possible to tune the system sensitivity to external refractive index by simple mechanical action. The experimental results show that it is possible to tune the sensitivity to external refractive index by more than 50% by control of the curvature in the Mach-Zehnder interferometer.

2006

Quantum dots as self-referenced optical fibre temperature probes for luminescent chemical sensors

Autores
Jorge, PAS; Mayeh, M; Benrashid, R; Caldas, P; Santos, JL; Farahi, F;

Publicação
MEASUREMENT SCIENCE & TECHNOLOGY

Abstract
The use of semiconductor nano-particles as temperature probes in luminescence chemical sensing applications is addressed. Temperature changes the intensity, the peak wavelength and the spectral width of the quantum dots luminescent emission in a linear and reversible way. Results are presented that show the feasibility of implementing a self-referenced intensity-based sensor to perform temperature measurements independent of the optical power level in the sensing system. A resolution of 0.3 degrees C was achieved. In addition, it is demonstrated that self-referenced temperature measurements at multiple points could be performed using reflection or transmission based optical fibre configurations.

2004

Optical fiber probes for fluorescence based oxygen sensing

Autores
Jorge, PAS; Caldas, P; Rosa, CC; Oliva, AG; Santos, JL;

Publicação
SENSORS AND ACTUATORS B-CHEMICAL

Abstract
An optical fiber sensing system, for monitoring oxygen aiming in vivo nuclear magnetic resonance (NMR) applications is presented. Oxygen detection is based on the dynamic quenching of the fluorescence of a ruthenium complex trapped in the porous structure of a sol-gel silica film. Oxygen concentration is determined by phase-modulation fluorometry. Preliminary results concerning the characterization of doped sol-gel thin films deposited by dip coating in glass slides and in optical fiber probes are presented. Four different probe configurations are tested and compared. Best results are obtained with a fiber taper configuration which shows reproducibility and best excitation efficiency. This structure is fully characterized and some considerations regarding optimal fiber optical sensing probes for 02 detection are addressed.

2008

Dual sensing of oxygen and temperature using quantum dots and a ruthenium complex

Autores
Jorge, PAS; Maule, C; Silva, AJ; Benrashid, R; Santos, JL; Farahi, F;

Publicação
ANALYTICA CHIMICA ACTA

Abstract
A scheme for the simultaneous determination of oxygen and temperature using quantum dots and a ruthenium complex is demonstrated. The luminescent complex [Ru(II)-tris(4,7-diphenyl-1,10-phenanthroline)](2+) is immobilized in a non-hydrolytic sol-gel matrix and used as the oxygen sensor. The temperature information is provided by the luminescent emission of core-shell CdSe-ZnS semiconductor nanocrystals immobilized in the same material. Measurements of oxygen and temperature could be performed with associated errors of +/- 2% of oxygen concentration and +/- 1 degrees C, respectively In addition, it is shown that while the dye luminescence intensity is quenched both by oxygen and temperature, the nanocrystals luminescent emission responds only to temperature. Results presented demonstrate that the combined luminescence response allows the simultaneous assessment of both parameters using a single optical fiber system. In particular, it was shown that a 10% error in the measured oxygen concentration, induced by a change in the sample temperature, could be compensated using the nanocrystals temperature information and a correction function.

  • 42
  • 45