Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por José Luís Borges

2024

A Data-Driven Monitoring Approach for Diagnosing Quality Degradation in a Glass Container Process

Autores
Oliveira, MA; Guimaraes, L; Borges, JL; Almada-Lobo, B;

Publicação
MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE, LOD 2023, PT I

Abstract
Maintaining process quality is one of the biggest challenges manufacturing industries face, as production processes have become increasingly complex and difficult to monitor effectively in today's manufacturing contexts. Reliance on skilled operators can result in suboptimal solutions, impacting process quality. In doing so, the importance of quality monitoring and diagnosis methods cannot be undermined. Existing approaches have limitations, including assumptions, prior knowledge requirements, and unsuitability for certain data types. To address these challenges, we present a novel unsupervised monitoring and detection methodology to monitor and evaluate the evolution of a quality characteristic's degradation. To measure the degradation we created a condition index that effectively captures the quality characteristic's mean and scale shifts from the company's specification levels. No prior knowledge or data assumptions are required, making it highly flexible and adaptable. By transforming the unsupervised problem into a supervised one and utilising historical production data, we employ logistic regression to predict the quality characteristic's conditions and diagnose poor condition moments by taking advantage of the model's interpretability. We demonstrate the methodology's application in a glass container production process, specifically monitoring multiple defective rates. Nonetheless, our approach is versatile and can be applied to any quality characteristic. The ultimate goal is to provide decision-makers and operators with a comprehensive view of the production process, enabling better-informed decisions and overall product quality improvement.

  • 10
  • 10