2009
Autores
Mendes Moreira, J; Jorge, AM; Soares, C; de Sousa, JF;
Publicação
MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION
Abstract
Integration methods for ensemble learning can use two different approaches: combination or selection. The combination approach (also called fusion) consists on the combination of the predictions obtained by different models in the ensemble to obtain the final ensemble predication. The selection approach selects one (or more) models from the ensemble according to the prediction performance of these models on similar data from the validation set. Usually, the method to select similar data is the k-nearest neighbors with the Euclidean distance. In this paper we discuss other approaches to obtain similar data for the regression problem. We show that using similarity measures according to the target values improves results. We also show that selecting dynamically several models for the prediction task increases prediction accuracy comparing to the selection of just one model.
2006
Autores
Moreira, JM; Jorge, AM; Soares, C; de Sousa, JF;
Publicação
FOUNDATIONS OF INTELLIGENT SYSTEMS, PROCEEDINGS
Abstract
This paper describes the study on example selection in regression problems using mu-SVM (Support Vector Machine) linear as prediction algorithm. The motivation case is a study done on real data for a problem of bus trip time prediction. In this study we use three different training sets: all the examples, examples from past days similar to the day where prediction is needed, and examples selected by a CART regression tree. Then, we verify if the CART based example selection approach is appropriate on different regression data sets. The experimental results obtained are promising.
2012
Autores
Jorge, AM; Mendes Moreira, J; De Sousa, JF; Soares, C; Azevedo, PJ;
Publicação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Abstract
In this paper we study the deviation of bus trip duration and its causes. Deviations are obtained by comparing scheduled times against actual trip duration and are either delays or early arrivals. We use distribution rules, a kind of association rules that may have continuous distributions on the consequent. Distribution rules allow the systematic identification of particular conditions, which we call contexts, under which the distribution of trip time deviations differs significantly from the overall deviation distribution. After identifying specific causes of delay the bus company operational managers can make adjustments to the timetables increasing punctuality without disrupting the service. © Springer-Verlag Berlin Heidelberg 2012.
2009
Autores
Moreira, JM; Soares, C; Jorge, AM; de Sousa, JF;
Publicação
ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS
Abstract
Travel time prediction is an important tool for the planning tasks of mass transit and logistics companies. ID this paper we investigate the use of regression methods for the problem of predicting the travel time of buses in a Portuguese public transportation company. More specifically, we empirically evaluate the impact of varying parameters on the performance of different regression algorithms, such as support vector machines (SVM), random forests (RF) and projection pursuit, regression (PPR). We also evaluate the impact of the focusing tusks (example selection; domain value definition and feature selection) in the accuracy of those algorithms. Concerning the algorithms, we observe that 1) RF is quite robust to the choice of parameters and focusing methods: 2) the choice of parameters for SVM can be made independently of focusing methods while 3) for PPR they should be selected simultaneously. For the focusing methods, we observe that a stronger effect is obtained using example selection, particularly in combination with SVM.
2024
Autores
Duarte, SP; de Sousa, JP; de Sousa, JF;
Publicação
JOURNAL OF URBAN MOBILITY
Abstract
The evolution of urban morphology and urban mobility reveals a complex and multidimensional relation that has been historically linked to the evolution of technology and its influence on people's behaviour, desires, and needs. The increasing level of digitalization of human interactions in both social and work environments has created a new paradigm for urban mobility. Alongside, sustainability concerns are also accelerating the design of new policies for improving citizens' quality of life in urban areas. To address this new paradigm, municipalities need to consider new methodologies encompassing the different dimensions of the urban environment. This can be achieved if key stakeholders participate in co-creating and co-designing new solutions for urban mobility. In this paper we propose a multidisciplinary approach to these problems, supported by service-dominant logic concepts. The approach was used to design the CoDUMIS framework that brings together four dimensions of urban areas (social, urban, technological, and organizational). The application of the framework to four distinct cases, in Portuguese municipalities, resulted in a set of guidelines that help municipalities to improve their services and policies in a participatory environment, involving all the stakeholders.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.