2024
Autores
Tosin, R; Monteiro Silva, F; Martins, R; Cunha, M;
Publicação
HORTICULTURAE
Abstract
The determination of grape quality parameters is intricately linked to the mineral composition of the fruit; this relationship is increasingly affected by the impacts of climate change. The conventional chemical methodologies employed for the mineral quantification of grape tissues are expensive and impracticable for widespread commercial applications. This paper utilized Laser-Induced Breakdown Spectroscopy (LIBS) to analyze the mineral constituents within the skin, pulp, and seeds of two distinct Vitis vinifera cultivars: a white cultivar (Loureiro) and a red cultivar (Vinh & atilde;o). The primary objective was to discriminate the potential variations in the calcium (Ca), magnesium (Mg), and nitrogen (N) concentrations and water content among different grape tissues, explaining their consequential impact on the metabolic constitution of the grapes and, by extension, their influence on various quality parameters. Additionally, the study compared the mineral contents of the white and red grape cultivars across three distinct time points post veraison. Significant differences (p < 0.05) were observed between the Loureiro and Vinh & atilde;o cultivars in Ca concentrations across all the dates and tissues and for Mg in the skin and pulp, N in the pulp and seeds, and water content in the skin and pulp. In the Vinh & atilde;o cultivar, Ca differences were found in the pulp across the dates, N in the seeds, and water content in the skin, pulp, and seeds. Comparing the cultivars within tissues, Ca exhibited differences in the pulp, Mg in the skin and pulp, N in the pulp and seeds, and water content in the skin, pulp, and seeds. These findings provide insights into the relationship between the grape mineral and water content, climatic factors, and viticulture practices within a changing climate.
2024
Autores
Barroso, TG; Queirós, C; Monteiro Silva, F; Santos, F; Gregório, AH; Martins, RC;
Publicação
BIOSENSORS-BASEL
Abstract
Spectral point-of-care technology is reagentless with minimal sampling (<10 mu L) and can be performed in real-time. White blood cells are non-dominant in blood and in spectral information, suffering significant interferences from dominant constituents such as red blood cells, hemoglobin and billirubin. White blood cells of a bigger size can account for 0.5% to 22.5% of blood spectra information. Knowledge expansion was performed using data augmentation through the hybridization of 94 real-world blood samples into 300 synthetic data samples. Synthetic data samples are representative of real-world data, expanding the detailed spectral information through sample hybridization, allowing us to unscramble the spectral white blood cell information from spectra, with correlations of 0.7975 to 0.8397 and a mean absolute error of 32.25% to 34.13%; furthermore, we achieved a diagnostic efficiency between 83% and 100% inside the reference interval (5.5 to 19.5 x 10(9) cell/L), and 85.11% for cases with extreme high white blood cell counts. At the covariance mode level, white blood cells are quantified using orthogonal information on red blood cells, maximizing sensitivity and specificity towards white blood cells, and avoiding the use of non-specific natural correlations present in the dataset; thus, the specifity of white blood cells spectral information is increased. The presented research is a step towards high-specificity, reagentless, miniaturized spectral point-of-care hematology technology for Veterinary Medicine.
2024
Autores
Tosin, R; Cunha, M; Monteiro Silva, F; Santos, F; Barroso, T; Martins, R;
Publicação
FRONTIERS IN PLANT SCIENCE
Abstract
Introduction: Precision monitoring maturity in climacteric fruits like tomato is crucial for minimising losses within the food supply chain and enhancing pre- and post-harvest production and utilisation. Objectives: This paper introduces an approach to analyse the precision maturation of tomato using hyperspectral tomography-like. Methods: A novel bi-directional spectral reconstruction method is presented, leveraging visible to near-infrared (Vis-NIR) information gathered from tomato spectra and their internal tissues (skin, pulp, and seeds). The study, encompassing 118 tomatoes at various maturation stages, employs a multi-block hierarchical principal component analysis combined with partial least squares for bi-directional reconstruction. The approach involves predicting internal tissue spectra by decomposing the overall tomato spectral information, creating a superset with eight latent variables for each tissue. The reverse process also utilises eight latent variables for reconstructing skin, pulp, and seed spectral data. Results: The reconstruction of the tomato spectra presents a mean absolute percentage error of 30.44 % and 5.37 %, 5.25 % and 6.42 % and Pearson's correlation coefficient of 0.85, 0.98, 0.99 and 0.99 for the skin, pulp and seed, respectively. Quality parameters, including soluble solid content (%), chlorophyll (a.u.), lycopene (a.u.), and puncture force (N), were assessed and modelled with PLS with the original and reconstructed datasets, presenting a range of R2 higher than 0.84 in the reconstructed dataset. An empirical demonstration of the tomato maturation in the internal tissues revealed the dynamic of the chlorophyll and lycopene in the different tissues during the maturation process. Conclusion: The proposed approach for inner tomato tissue spectral inference is highly reliable, provides early indications and is easy to operate. This study highlights the potential of Vis-NIR devices in precision fruit maturation assessment, surpassing conventional labour-intensive techniques in cost-effectiveness and efficiency. The implications of this advancement extend to various agronomic and food chain applications, promising substantial improvements in monitoring and enhancing fruit quality. [GRAPHICS] .
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.