2008
Autores
Pereira, J; Viana, A; Lucus, BG; Matos, M;
Publicação
International Journal of Energy Sector Management
Abstract
Purpose - The purpose of this paper is to solve the problem of committing electric power generators (unit commitment, UC), considering network constraints. Design/methodology/approach - The UC is first solved with a local search based meta-heuristic, following the assumption that all generators and loads are connected to a single network node. For evaluation purposes, the economical production levels of the units committed are computed by running a pre-dispatch algorithm where network constraints are not included. If a good quality solution is reached, an economic dispatch (ED) with network constraints is performed, where the geographic location of generators and loads are considered. Therefore, the production level of each committed generator is performed that leads to the global lowest solution cost, regarding both the generators' costs and constraints and the power system network constraints. Findings - The algorithm proposed is computationally efficient, given the time available for decision making. In addition, the solution for this algorithm, in terms of minimization of total costs, is generally better than the solution of the two phases approach. Some contractual and legal aspects related with the injection in network connections can also be included in the model. Practical implications - UC with network constraints has a large potential of use, especially for small and medium size power systems. It reflects reality in a closer way and provides a more complete and realistic knowledge about the system in operation. Originality/value - The paper presents an approach where theED with network constraints is integrated with the UC procedure. The model described is currently implemented in an EMS package offered in the market - making it a case of successful transfer from science to industry.
2008
Autores
Viana, A; de Sousa, JP; Matos, MA;
Publicação
ELECTRIC POWER SYSTEMS RESEARCH
Abstract
Due to its combinatorial nature, the Unit Commitment problem has for long been an important research challenge, with several optimization techniques, from exact to heuristic methods, having been proposed to deal with it. In line with one current trend of research, metaheuristic approaches have been studied and some interesting results have already been achieved and published. However, a successful utilization of these methodologies in practice, when embedded in Energy Management Systems, is still constrained by the reluctance of industrial partners in using techniques whose performance highly depends on a correct parameter tuning. Therefore, the application of metaheuristics to the Unit Commitment problem does still justify further research. In this paper we propose a new search strategy, for Local Search based metaheuristics, that tries to overcome this issue. The approach has been tested in a set of instances, leading to very good results in terms of solution cost, when compared either to the classical Lagrangian Relaxation or to other metaheuristics. It also drastically reduced the computation times. Furthermore, the approach proved to be robust, always leading to good results independently of the metaheuristic parameters used.
2023
Autores
Klimentova, X; Biro, P; Viana, A; Costa, V; Pedroso, JP;
Publicação
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
Abstract
Kidney exchange programs (KEPs) represent an additional possibility of transplant for patients suffering from end-stage kidney disease. If a patient has a willing living donor with whom the patient is not compatible, the pair recipient-donor can join a pool of incompatible pairs and, if compatibility between recipient and donor in two or more pairs exists, organs can be exchanged between them. The problem can be modelled as an integer program that in general aims at finding the pairs that should be selected for transplant such that maximum number of transplants is performed. In this paper, we consider that for each recipient there may exist a preference order over the organs that he/she can receive, since a recipient may be compatible with several donors but the level of compatibility with the recipient might vary for different donors. Under this setting, the aim is to find the maximum cardinality stable exchange, a solution where no blocking cycle exists, i.e., there is no cycle such that all recipients prefer the donor in that cycle rather than that in the exchange. For this purpose we propose four novel integer programming models based on the well-known edge and cycle formulations, and also on the position-indexed formulation. These formulations are adjusted for both finding stable and strongly stable exchanges under strict preferences and for the case when ties in preferences may exist. Further-more, we study a situation when the stability requirement can be relaxed by addressing the trade-off between maximum cardinality versus number of blocking cycles allowed in a solution. The effectiveness of the proposed models is assessed through extensive computational experiments on a wide set of in-stances. Results show that the cycle-edge and position-indexed formulations outperform the other two formulations. Another important practical outcome is that targeting strongly stable solutions has a much higher negative impact on the number of transplants (with an average reduction of up to 20% for the bigger instances), when compared to stable solutions.
2015
Autores
Dias, J; Rocha, H; Viana, A;
Publicação
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH
Abstract
2023
Autores
Biró, P; Klijn, F; Klimentova, X; Viana, A;
Publicação
MATHEMATICS OF OPERATIONS RESEARCH
Abstract
In a housing market of Shapley and Scarf, each agent is endowed with one indivisible object and has preferences over all objects. An allocation of the objects is in the (strong) core if there exists no (weakly) blocking coalition. We show that, for strict preferences, the unique strong core allocation respects improvement-if an agent's object becomes more desirable for some other agents, then the agent's allotment in the unique strong core allocation weakly improves. We extend this result to weak preferences for both the strong core (conditional on nonemptiness) and the set of competitive allocations (using probabilistic allocations and stochastic dominance). There are no counterparts of the latter two results in the two-sided matching literature. We provide examples to show how our results break down when there is a bound on the length of exchange cycles. Respecting improvements is an important property for applications of the housing markets model, such as kidney exchange: it incentivizes each patient to bring the best possible set of donors to the market. We conduct computer simulations using markets that resemble the pools of kidney exchange programs. We compare the game-theoretical solutions with current techniques (maximum size and maximum weight allocations) in terms of violations of the respecting improvement property. We find that game-theoretical solutions fare much better at respecting improvements even when exchange cycles are bounded, and they do so at a low efficiency cost. As a stepping stone for our simulations, we provide novel integer programming formulations for computing core, competitive, and strong core allocations.
2018
Autores
Alvelos, F; Viana, A;
Publicação
OPERATIONS RESEARCH PROCEEDINGS 2017
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.