Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Carlos Miguel Costa

2024

Inspection of Part Placement Within Containers Using Point Cloud Overlap Analysis for an Automotive Production Line

Autores
Costa, M; Dias, J; Nascimento, R; Rocha, C; Veiga, G; Sousa, A; Thomas, U; Rocha, L;

Publicação
Lecture Notes in Mechanical Engineering

Abstract
Reliable operation of production lines without unscheduled disruptions is of paramount importance for ensuring the proper operation of automated working cells involving robotic systems. This article addresses the issue of preventing disruptions to an automotive production line that can arise from incorrect placement of aluminum car parts by a human operator in a feeding container with 4 indexing pins for each part. The detection of the misplaced parts is critical for avoiding collisions between the containers and a high pressure washing machine and also to avoid collisions between the parts and a robotic arm that is feeding parts to a air leakage inspection machine. The proposed inspection system relies on a 3D sensor for scanning the parts inside a container and then estimates the 6 DoF pose of the container followed by an analysis of the overlap percentage between each part reference point cloud and the 3D sensor data. When the overlap percentage is below a given threshold, the part is considered as misplaced and the operator is alerted to fix the part placement in the container. The deployment of the inspection system on an automotive production line for 22 weeks has shown promising results by avoiding 18 hours of disruptions, since it detected 407 containers having misplaced parts in 4524 inspections, from which 12 were false negatives, while no false positives were reported, which allowed the elimination of disruptions to the production line at the cost of manual reinspection of 0.27% of false negative containers by the operator. © 2024, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2023

Sensor Placement Optimization using Random Sample Consensus for Best Views Estimation

Autores
Costa, CM; Veiga, G; Sousa, A; Thomas, U; Rocha, L;

Publicação
2023 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
The estimation of a 3D sensor constellation for maximizing the observable surface area percentage of a given set of target objects is a challenging and combinatorial explosive problem that has a wide range of applications for perception tasks that may require gathering sensor information from multiple views due to environment occlusions. To tackle this problem, the Gazebo simulator was configured for accurately modeling 8 types of depth cameras with different hardware characteristics, such as image resolution, field of view, range of measurements and acquisition rate. Later on, several populations of depth sensors were deployed within 4 different testing environments targeting object recognition and bin picking applications with increasing level of occlusions and geometry complexity. The sensor populations were either uniformly or randomly inserted on a set of regions of interest in which useful sensor data could be retrieved and in which the real sensors could be installed or moved by a robotic arm. The proposed approach of using fusion of 3D point clouds from multiple sensors using color segmentation and voxel grid merging for fast surface area coverage computation, coupled with a random sample consensus algorithm for best views estimation, managed to quickly estimate useful sensor constellations for maximizing the observable surface area of a set of target objects, making it suitable to be used for deciding the type and spatial disposition of sensors and also guide movable 3D cameras for avoiding environment occlusions.

  • 5
  • 5