Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Jaime Cardoso

2019

Hypothesis transfer learning based on structural model similarity

Autores
Fernandes, K; Cardoso, JS;

Publicação
NEURAL COMPUTING & APPLICATIONS

Abstract
Transfer learning focuses on building better predictive models by exploiting knowledge gained in previous related tasks, being able to soften the traditional supervised learning assumption of having identical train-test distributions. Most efforts on transfer learning consider revisiting the data from the source tasks or rely on transferring knowledge for specific models. In this paper, a general framework is proposed for transferring knowledge by including a regularization factor based on the structural model similarity between related tasks. The proposed approach is instantiated to different models for regression, classification, ranking and recommender systems, obtaining competitive results in all of them. Also, we explore high-level concepts in transfer learning like sparse transfer, partially observable transfer and cross-model transfer.

2019

DEEP KEYPOINT DETECTION FOR THE AESTHETIC EVALUATION OF BREAST CANCER SURGERY OUTCOMES

Autores
Silva, W; Castro, E; Cardoso, MJ; Fitzal, F; Cardoso, JS;

Publicação
2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019)

Abstract
Breast cancer high survival rate led to an increased interest in the quality of life after treatment, particularly regarding the aesthetic outcome. Currently used aesthetic assessment methods are subjective, which make reproducibility and impartiality impossible. To create an objective method capable of being selected as the gold standard, it is fundamental to detect, in a completely automatic manner, keypoints in photographs of women's torso after being subjected to breast cancer surgeries. This paper proposes a deep and a hybrid model to detect keypoints with high accuracy. Our methods are tested on two datasets, one composed of images with a clean and consistent background and a second one that contains photographs taken under poor lighting and background conditions. The proposed methods represent an improvement in the detection of endpoints, nipples and breast contour for both datasets in terms of average error distance when compared with the current state-of-the-art.

2019

How to produce complementary explanations using an Ensemble Model

Autores
Silva, W; Fernandes, K; Cardoso, JS;

Publicação
2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN)

Abstract
In order to increase the adoption of machine learning models in areas like medicine and finance, it is necessary to have correct and diverse explanations for the decisions that the models provide, to satisfy the curiosity of decision-makers and the needs of the regulators. In this paper, we introduced a method, based in a previously presented framework, to explain the decisions of an Ensemble Model. Moreover, we instantiate the proposed approach to an ensemble composed of a Scorecard, a Random Forest, and a Deep Neural Network, to produce accurate decisions along with correct and diverse explanations. Our methods are tested on two biomedical datasets and one financial dataset. The proposed ensemble leads to an improvement in the quality of the decisions, and in the correctness of the explanations, when compared to its constituents alone. Qualitatively, it produces diverse explanations that make sense and convince the experts.

2019

Insulator visual non-conformity detection in overhead power distribution lines using deep learning

Autores
Prates, RM; Cruz, R; Marotta, AP; Ramos, RP; Simas Filho, EF; Cardoso, JS;

Publicação
COMPUTERS & ELECTRICAL ENGINEERING

Abstract
Overhead Power Distribution Lines (OPDLs) correspond to a large percentage of the medium-voltage electrical systems. In these networks, visual inspection activities are usually performed without resorting to automated systems, requiring a significant investment of time and human resources. We present a methodology to identify the defect and type of insulators using Convolutional Neural Networks (CNNs). More than 2500 photographs were collected both from inside a studio and from a realistic OPDL. A classification model is proposed to automatically recognize the insulators conformity. This model is able to learn from indoors photographs by augmenting these images with realistic details such as top ties and real-world backgrounds. Furthermore, Multi-Task Learning (MTL) was used to improve performance of defect detection by also predicting the insulator class. The proposed methodology is able to achieve an accuracy of 92% for material classification and 85% for defect detection, with F1-score of 0.75, surpassing available solutions.

2019

Averse Deep Semantic Segmentation

Autores
Cruz, R; Costa, JFP; Cardoso, JS;

Publicação
2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC)

Abstract
Semantic segmentation consists in predicting whether any given pixel is part of the object of interest or not. Two types of errors are therefore possible: false positives and false negatives. For visualization and emphasis purposes, we might want to put special effort into reducing one type of error in detriment of the other. A common practice is to define the two types of errors as a relative trade-off using a cost matrix. However, it might be more natural for humans to define the trade-off in terms of an absolute constraint on one type of errors while trying to minimize the other. Previously, we suggested possible approaches to introduce this absolute trade-off in binary classifiers. Extending to semantic segmentation, we propose a threshold on the sigmoid layer and modifications to gradient descent such as adding a new term to the loss function and training in two phases. The latter produced the more resilient results, with a simple threshold being sufficient in most cases.

2019

A Deep Learning Design for Improving Topology Coherence in Blood Vessel Segmentation

Autores
Araujo, RJ; Cardoso, JS; Oliveira, HP;

Publicação
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT I

Abstract
The segmentation of blood vessels in medical images has been heavily studied, given its impact in several clinical practices. Deep Learning methods have been applied to supervised segmentation of blood vessels, mainly the retinal ones due to the availability of manual annotations. Despite their success, they typically minimize the Binary Cross Entropy loss, which does not penalize topological mistakes. These errors are relevant in graph-like structures such as blood vessel trees, as a missing segment or an inadequate merging or splitting of branches, may severely change the topology of the network and put at risk the extraction of vessel pathways and their characterization. In this paper, we propose an end-to-end network design comprising a cascade of a typical segmentation network and a Variational Auto-Encoder which, by learning a rich but compact latent space, is able to correct many topological incoherences. Our experiments in three of the most commonly used retinal databases, DRIVE, STARE, and CHASEDB1, show that the proposed model effectively learns representations inducing better segmentations in terms of topology, without hurting the usual pixel-wise metrics.

  • 20
  • 59