Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Jaime Cardoso

2021

DeSIRe: Deep Signer-Invariant Representations for Sign Language Recognition

Autores
Ferreira, PM; Pernes, D; Rebelo, A; Cardoso, JS;

Publicação
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS

Abstract
As a key technology to help bridging the gap between deaf and hearing people, sign language recognition (SLR) has become one of the most active research topics in the human-computer interaction field. Although several SLR methodologies have been proposed, the development of a real-world SLR system is still a very challenging task. One of the main challenges is related to the large intersigner variability that exists in the manual signing process of sign languages. To address this problem, we propose a novel end-to-end deep neural network that explicitly models highly discriminative signer-independent latent representations from the input data. The key idea of our model is to learn a distribution over latent representations, conditionally independent of signer identity. Accordingly, the learned latent representations will preserve as much information as possible about the signs, and discard signer-specific traits that are irrelevant for recognition. By imposing such regularization in the representation space, the result is a truly signer-independent model which is robust to different and new test signers. The experimental results demonstrate the effectiveness of the proposed model in several SLR databases.

2019

Weight Rotation as a Regularization Strategy in Convolutional Neural Networks

Autores
Castro, E; Pereira, JC; Cardoso, JS;

Publicação
2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC)

Abstract
Convolutional Neural Networks (CNN) have become the gold standard in many visual recognition tasks including medical applications. Due to their high variance, however, these models are prone to over-fit the data they are trained on. To mitigate this problem, one of the most common strategies, is to perform data augmentation. Rotation, scaling and translation are common operations. In this work we propose an alternative method to rotation-based data augmentation where the rotation transformation is performed inside the CNN architecture. In each training batch the weights of all convolutional layers are rotated by the same random angle. We validate our proposed method empirically showing its usefulness under different scenarios.

2018

Transfer learning approach for fall detection with the FARSEEING real-world dataset and simulated falls

Autores
Silva, J; Sousa, I; Cardoso, JS;

Publicação
40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018, Honolulu, HI, USA, July 18-21, 2018

Abstract
Falls are very rare and extremely difficult to acquire in free living conditions. Due to this, most of prior work on fall detection has focused on simulated datasets acquired in scenarios that mimic the real-world context, however, the validation of systems trained with simulated falls remains unclear. This work presents a transfer learning approach for combining a dataset of simulated falls and non-falls, obtained from young volunteers, with the real-world FARSEEING dataset, in order to train a set of supervised classifiers for discriminating between falls and non-falls events. The objective is to analyze if a combination of simulated and real falls could enrich the model. In the real-world, falls are a sporadic event, which results in imbalanced datasets. In this work, several methods for imbalance learning were employed: SMOTE, Balance Cascade and Ranking models. The Balance Cascade obtained less misclassifications in the validation set.There was an improvement when mixing the real falls and simulated non-falls compared to the case when only simulated falls were used for training. When testing with a mixed set with real falls and simulated non-falls, it is even more important to train with a mixed set. Moreover, it was possible to onclude that a model trained with simulated falls generalize better when tested with real falls, than the opposite. The overall accuracy obtained for the combination of different datasets were above 95 %. © 2018 IEEE.

2018

Ordinal Image Segmentation using Deep Neural Networks

Autores
Fernandes, K; Cardoso, JS;

Publicação
2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN)

Abstract
Ordinal arrangement of objects is a common property in biomedical images. Traditional methods to deal with semantic image segmentation in this setting are ad-hoc and application specific. In this paper, we propose ordinal-aware deep learning architectures for image segmentation that enforce pixelwise consistency by construction. We validated the proposed architectures on several real-life biomedical datasets and achieved competitive results in all cases. © 2018 IEEE.

2019

SpaMHMM: Sparse Mixture of Hidden Markov Models for Graph Connected Entities

Autores
Perues, D; Cardoso, JS;

Publicação
2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN)

Abstract
We propose a framework to model the distribution of sequential data coming from a set of entities connected in a graph with a known topology. The method is based on a mixture of shared hidden Markov models (HMMs), which are jointly trained in order to exploit the knowledge of the graph structure and in such a way that the obtained mixtures tend to be sparse. Experiments in different application domains demonstrate the effectiveness and versatility of the method.

2019

Towards Automatic Rat's Gait Analysis Under Suboptimal Illumination Conditions

Autores
Adonias, AF; Ferreira Gomes, J; Alonso, R; Neto, F; Cardoso, JS;

Publicação
PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2019, PT II

Abstract
Rat’s gait analysis plays an important role in the assessment of the impact of certain drugs on the treatment of osteoarthritis. Since movement-evoked pain is an early characteristic of this degenerative joint disease, the affected animal modifies its behavior to protect the injured joint from load while walking, altering its gait’s parameters, which can be detected through a video analysis. Because commercially available video-based gait systems still present many limitations, researchers often choose to develop a customized system for the acquisition of the videos and analyze them manually, a laborious and time-consuming task prone to high user variability. Therefore, and bearing in mind the recent advances in machine learning and computer vision fields, as well as their presence in many tracking and recognition applications, this work is driven by the need to find a solution to automate the detection and quantification of the animal’s gait changes making it an easier, faster, simpler and more robust task. Thus, a comparison between different methodologies to detect and segment the animal under degraded luminance conditions is presented in this paper as well as an algorithm to detect, segment and classify the animal’s paws. © 2019, Springer Nature Switzerland AG.

  • 21
  • 59