Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Ana Maria Mendonça

2023

OCT Image Synthesis through Deep Generative Models

Autores
Melo, T; Cardoso, J; Carneiro, A; Campilho, A; Mendonça, AM;

Publicação
2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS

Abstract
The development of accurate methods for OCT image analysis is highly dependent on the availability of large annotated datasets. As such datasets are usually expensive and hard to obtain, novel approaches based on deep generative models have been proposed for data augmentation. In this work, a flow-based network (SRFlow) and a generative adversarial network (ESRGAN) are used for synthesizing high-resolution OCT B-scans from low-resolution versions of real OCT images. The quality of the images generated by the two models is assessed using two standard fidelity-oriented metrics and a learned perceptual quality metric. The performance of two classification models trained on real and synthetic images is also evaluated. The obtained results show that the images generated by SRFlow preserve higher fidelity to the ground truth, while the outputs of ESRGAN present, on average, better perceptual quality. Independently of the architecture of the network chosen to classify the OCT B-scans, the model's performance always improves when images generated by SRFlow are included in the training set.

2023

An Active Learning Approach for Support Device Detection in Chest Radiography Images

Autores
Belo, RM; Rocha, J; Mendonca, AM; Campilho, A;

Publicação
FIFTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION, ICMV 2022

Abstract
Deep Learning (DL) algorithms allow fast results with high accuracy in medical imaging analysis solutions. However, to achieve a desirable performance, they require large amounts of high quality data. Active Learning (AL) is a subfield of DL that aims for more efficient models requiring ideally fewer data, by selecting the most relevant information for training. CheXpert is a Chest X-Ray (CXR) dataset, containing labels for different pathologic findings, alongside a Support Devices (SD) label. The latter contains several misannotations, which may impact the performance of a pathology detection model. The aim of this work is the detection of SDs in CheXpert CXR images and the comparison of the resulting predictions with the original CheXpert SD annotations, using AL approaches. A subset of 10,220 images was selected, manually annotated for SDs and used in the experimentations. In the first experiment, an initial model was trained on the seed dataset (6,200 images from this subset). The second and third approaches consisted in AL random sampling and least confidence techniques. In both of these, the seed dataset was used initially, and more images were iteratively employed. Finally, in the fourth experiment, a model was trained on the full annotated set. The AL least confidence experiment outperformed the remaining approaches, presenting an AUC of 71.10% and showing that training a model with representative information is favorable over training with all labeled data. This model was used to obtain predictions, which can be useful to limit the use of SD mislabelled images in future models.

2023

Deep Feature-Based Automated Chest Radiography Compliance Assessment

Autores
Costa, M; Pereira, SC; Pedrosa, J; Mendonca, AM; Campilho, A;

Publicação
2023 IEEE 7TH PORTUGUESE MEETING ON BIOENGINEERING, ENBENG

Abstract
Chest radiography is one of the most common imaging exams, but its interpretation is often challenging and timeconsuming, which has motivated the development of automated tools for pathology/abnormality detection. Deep learning models trained on large-scale chest X-ray datasets have shown promising results but are highly dependent on the quality of the data. However, these datasets often contain incorrect metadata and non-compliant or corrupted images. These inconsistencies are ultimately incorporated in the training process, impairing the validity of the results. In this study, a novel approach to detect non-compliant images based on deep features extracted from a patient position classification model and a pre-trained VGG16 model are proposed. This method is applied to CheXpert, a widely used public dataset. From a pool of 100 images, it is shown that the deep feature-based methods based on a patient position classification model are able to retrieve a larger number of non-compliant images (up to 81% of non-compliant images), when compared to the same methods but based on a pretrained VGG16 (up to 73%) and the state of the art uncertainty-based method (50%).

2023

Semi-supervised Multi-structure Segmentation in Chest X-Ray Imaging

Autores
Brioso, RC; Pedrosa, J; Mendonça, AM; Campilho, A;

Publicação
2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS

Abstract
The importance of X-Ray imaging analysis is paramount for healthcare institutions since it is the main imaging modality for patient diagnosis, and deep learning can be used to aid clinicians in image diagnosis or structure segmentation. In recent years, several articles demonstrate the capability that deep learning models have in classifying and segmenting chest x-ray images if trained in an annotated dataset. Unfortunately, for segmentation tasks, only a few relatively small datasets have annotations, which poses a problem for the training of robust deep learning strategies. In this work, a semi-supervised approach is developed which consists of using available information regarding other anatomical structures to guide the segmentation when the groundtruth segmentation for a given structure is not available. This semi-supervised is compared with a fully-supervised approach for the tasks of lung segmentation and for multi-structure segmentation (lungs, heart and clavicles) in chest x-ray images. The semi-supervised lung predictions are evaluated visually and show relevant improvements, therefore this approach could be used to improve performance in external datasets with missing groundtruth. The multi-structure predictions show an improvement in mean absolute and Hausdorff distances when compared to a fully supervised approach and visual analysis of the segmentations shows that false positive predictions are removed. In conclusion, the developed method results in a new strategy that can help solve the problem of missing annotations and increase the quality of predictions in new datasets.

2009

Fibronectin-mediated endothelialisation of chitosan porous matrices

Autores
Amaral, IF; Unger, RE; Fuchs, S; Mendonca, AM; Sousa, SR; Barbosa, MA; Pego, AP; Kirkpatrick, CJ;

Publicação
BIOMATERIALS

Abstract
Chitosan (Ch) porous matrices were investigated regarding their ability to be colonized by human microvascular endothelial cells (HPMEC-ST1.6R cell line) and macrovascular endothelial cells namely HUVECs. Specifically we assessed if previous incubation of Ch in a fibronectin (FN) solution was effective in promoting endothelial cell (EC) adhesion to Ch matrices with different degrees of acetylation (DAs). Upon FN physiadsorption, marked differences were found between the two DAs investigated, namely DA 4% and 15%. While cell adhesion was impaired on Ch with DA 15%, ECs were able to not only adhere to Ch with DA 4%, but also to spread and colonize the scaffolds, with retention of the EC phenotype and angiogenic potential. To explain the observed differences between the two DAs, protein adsorption studies using (125)I-FN and immunofluorescent labelling of FN cell-binding domains were carried out. in agreement with the higher cell numbers found, scaffolds with DA 4% revealed a higher number of exposed FN cell-binding domains as well as greater ability to adsorb FN and to retain and exchange adsorbed FN in the presence of competitive proteins. These findings suggest that the DA is a key parameter modulating EC adhesion to FN-coated Ch by influencing the adsorbed protein layer.

2009

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Preface

Autores
Araujo, H; Mendonca, AM; Pinho, AJ; Torres, MI;

Publicação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract

  • 11
  • 20