Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Paulo Caldas

2008

Fiber modal Michelson interferometers with coherence addressing and heterodyne interrogation

Autores
Caldas, P; Jorge, PAS; Araujo, FM; Ferreira, LA; Marques, MB; Rego, G; Santos, JL;

Publicação
OPTICAL ENGINEERING

Abstract
A long-period-grating-based fiber optic Michelson modal interferometer with coherence addressing and heterodyne interrogation is studied as a sensing structure for measuring environmental refractive index, temperature, and liquid level. The effects of several system parameters on the measurements are investigated. Experimental results show that the sensitivity to the external refractive index increases with the order of cladding mode and with a reduction of the fiber diameter. The decrease of the fiber diameter from 125 mu m down to 70 mu m enhances the sensitivity to the external index by a factor of 2.7. It is also shown that the use of a silica-core fiber increases the sensitivity to the external index by a factor of 1.4 and reduces the thermal sensitivity by a factor of 2.5 compared to a standard fiber. (C) 2008 Society of Photo-Optical Instrumentation Engineers.

2009

Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement

Autores
Aref, SH; Amezcua Correa, R; Carvalho, JP; Frazao, O; Caldas, P; Santos, JL; Araujo, FM; Latifi, H; Farahi, F; Ferreira, LA; Knight, JC;

Publicação
OPTICS EXPRESS

Abstract
In this work, sensitivity to strain and temperature of a sensor relying on modal interferometry in hollow-core photonic crystal fibers is studied. The sensing structure is simply a piece of hollow-core fiber connected in both ends to standard single mode fiber. An interference pattern that is associated to the interference of light that propagates in the hollow core fundamental mode with light that propagates in other modes is observed. The phase of this interference pattern changes with the measurand interaction, which is the basis for considering this structure for sensing. The phase recovery is performed using a white light interferometric technique. Resolutions of +/- 1.4 mu epsilon and +/- 0.2 degrees C were achieved for strain and temperature, respectively. It was also found that the fiber structure is not sensitive to curvature. (C) 2009 Optical Society of America

2011

Fiber optic hot-wire flowmeter based on a metallic coated hybrid long period grating/fiber Bragg grating structure

Autores
Caldas, P; Jorge, PAS; Rego, G; Frazao, O; Santos, JL; Ferreira, LA; Araujo, F;

Publicação
APPLIED OPTICS

Abstract
In this work an all-optical hot-wire flowmeter based on a silver coated fiber combining a long period grating and a fiber Bragg grating (FBG) structure is proposed. Light from a pump laser at 1480nm propagating down the fiber is coupled by the long period grating into the fiber cladding and is absorbed by the silver coating deposited on the fiber surface over the Bragg grating structure. This absorption acts like a hot wire raising the fiber temperature locally, which is effectively detected by the FBG resonance shift. The temperature increase depends on the flow speed of the surrounding air, which has the effect of cooling the fiber. It is demonstrated that the Bragg wavelength shift can be related to the flow speed. A flow speed resolution of 0.08m/s is achieved using this new configuration. (C) 2011 Optical Society of America

2006

Applications of quantum dots in optical fiber luminescent oxygen sensors

Autores
Jorge, PAS; Mayeh, M; Benrashid, R; Caldas, P; Santos, JL; Farahi, F;

Publicação
APPLIED OPTICS

Abstract
The potential applications of luminescent semiconductor nanocrystals to optical oxygen sensing are explored. The suitability of quantum dots to provide a reference signal in luminescence-based chemical sensors is addressed. A CdSe-ZnS nanocrystal, with an emission peak at 520 nm, is used to provide a reference signal. Measurements of oxygen concentration, which are based on the dynamic quenching of the luminescence of a ruthenium complex, are performed. Both the dye and the nanocrystal are immobilized in a solgel matrix and are excited by a blue LED. Experimental results show that the ratio between the reference and the sensor signals is highly insensitive to fluctuations of the excitation optical power. The use of CdTe, near-infrared quantum dots with an emission wavelength of 680 run, in combination with a ruthenium complex to provide a new mechanism for oxygen sensing, is investigated. The possibility of creating oxygen sensitivity in different spectral regions is demonstrated. The results obtained clearly show that this technique can be applied to develop a wavelength division multiplexed system of oxygen sensors. (c) 2006 Optical Society of America.

2009

Modal Interferometer Based on ARROW Fiber for Strain and Temperature Measurement

Autores
Aref, SH; Frazao, O; Caldas, P; Ferreira, LA; Araujo, FM; Santos, JL; Latifi, H; Foy, P; Hawkins, T; Ballato, J; Her, T; Farahi, F;

Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
In this letter, interferometric sensors based on antiresonance reflecting optical waveguide (ARROW) fibers were developed, and used to sense strain and temperature. Two types of solid-ore ARROW fibers were considered and signal demodulation was achieved by using the white light interferometric technique. The ARROW fibers have two rings of high index rods arranged in a hexagonal structure with a lattice constant of 6 m. The different sizes of the rods cause different measurand sensitivities for the two fibers. Resolutions of +/- 1.1 mu epsilon and +/- 0.07 degrees C were achieved for strain and temperature, respectively.

2009

Geometrical effects on the refractive index sensitivity of Mach-Zehnder fibre modal interferometers based on long-period gratings

Autores
Caldas, P; Jorge, PAS; Araujo, FM; Ferreira, LA; Rego, G; Santos, JL;

Publicação
MEASUREMENT SCIENCE & TECHNOLOGY

Abstract
In this work a modal interferometer based on arc-induced long-period gratings (LPGs) in a Mach-Zehnder configuration is evaluated as a sensing structure for environmental refractive index measurement. To interrogate this sensing device, coherence addressing and pseudo-heterodyne processing were used. The influence of geometric effects such as stretching, bending and twisting the interferometer on the sensitivity to refractive index changes was studied. It is shown that due to the antisymmetric nature of cladding modes in arc-induced LPGs, it is possible to tune the system sensitivity to external refractive index by simple mechanical action. The experimental results show that it is possible to tune the sensitivity to external refractive index by more than 50% by control of the curvature in the Mach-Zehnder interferometer.

  • 12
  • 14