2025
Autores
Leloup, E; Paquay, C; Pironet, T; Oliveira, JF;
Publicação
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
Abstract
In a survey of Belgian logistics service providers, the efficiency of first-mile pickup operations was identified as a key area for improvement, given the increasing number of returns in e-commerce, which has a significant impact on traffic congestion, carbon emissions, energy consumption and operational costs. However, the complexity of first-mile pickup operations, resulting from the small number of parcels to be collected at each pickup location, customer time windows, and the need to efficiently accommodate the highly heterogeneous cargo inside the vans, has hindered the development of real-world solution approaches. This article tackles this operational problem as a vehicle routing problem with time windows, time-dependent travel durations, and split pickups and integrates practical 3D container loading constraints such as vertical and horizontal stability as well as amore realistic reachability constraint to replace the classical Last In First Out (LIFO) constraint. To solve it, we propose a three-phase heuristic based on a savings constructive heuristic, an extreme point concept for the loading aspect and a General Variable Neighborhood Search as an improvement phase for both routing and packing. Numerical experiments are conducted to assess the performance of the algorithm on benchmark instances and new instances are tested to validate the positive managerial impacts oncost when allowing split pickups and on driver working duration when extending customer time windows. In addition, we show the impacts of considering the reachability constraint oncost and of the variation of speed during peak hours on schedule feasibility.
2025
Autores
Ali, S; Ramos, AG; Oliveira, JF;
Publicação
COMPUTERS & OPERATIONS RESEARCH
Abstract
In online three-dimensional packing problems where items are received one by one and require immediate packing decisions without prior knowledge of upcoming items, considering the static stability constraint is crucial for safely packing each arriving item in real time. Unstable loading patterns can result in risks of potential damage to items, containers, and operators during loading/unloading operations. Nevertheless, static stability constraints have often been neglected or oversimplified in existing online heuristic methods in the literature, undermining the practical implementation of these methods in real-world scenarios. In this study, we analyze how different static stability constraints affect solutions' efficiency and cargo stability, aiming to provide valuable insights and develop heuristic algorithms for real-world online problems, thus increasing the applicability of this research field. To this end, we embedded four distinct static stability constraints in online heuristics, including full-base support, partial-base support, center-of-gravity polygon support, and novel partial-base polygon support. Evaluating the impact of these constraints on the efficiency of a wide range of heuristic methods on real instances showed that regarding the number of used bins, heuristics with polygon- based stabilities have superior performance against those under full-base and partial-base support stabilities. The static mechanical equilibriumapproach offers a necessary and sufficient condition for the cargo static stability, and we employed it as a benchmark in our study to assess the quality of the four studied stability constraints. Knowing the number of stable items under each of these constraints provides valuable managerial insight for decision-making in real-world online packing scenarios.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.