Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Shazia Tabassum

2018

Cover Image, Volume 8, Issue 5

Autores
Tabassum, S; Pereira, FSF; Silva Fernandes, Sd; Gama, J;

Publicação
Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery

Abstract

2018

Social network analysis: An overview

Autores
Tabassum, S; Pereira, FSF; Fernandes, S; Gama, J;

Publicação
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY

Abstract
Social network analysis (SNA) is a core pursuit of analyzing social networks today. In addition to the usual statistical techniques of data analysis, these networks are investigated using SNA measures. It helps in understanding the dependencies between social entities in the data, characterizing their behaviors and their effect on the network as a whole and over time. Therefore, this article attempts to provide a succinct overview of SNA in diverse topological networks (static, temporal, and evolving networks) and perspective (ego-networks). As one of the primary applicability of SNA is in networked data mining, we provide a brief overview of network mining models as well; by this, we present the readers with a concise guided tour from analysis to mining of networks. This article is categorized under: Application Areas > Science and Technology Technologies > Machine Learning Fundamental Concepts of Data and Knowledge > Human Centricity and User Interaction Commercial, Legal, and Ethical Issues > Social Considerations

2019

Processing Evolving Social Networks for Change Detection Based on Centrality Measures

Autores
Pereira, FSF; Tabassum, S; Gama, J; de Amo, S; Oliveira, GMB;

Publicação
Studies in Big Data

Abstract
Social networks have an evolving characteristic due to the continuous interaction between users, with nodes associating and disassociating with each other as time flies. The analysis of such networks is especially challenging, because it needs to be performed with an online approach, under the one-pass constraint of data streams. Such evolving behavior leads to changes in the network topology that can be investigated under different perspectives. In this work we focus on the analysis of nodes position evolution—a node-centric perspective. Our goal is to spot change-points in an evolving network at which a node deviates from its normal behavior. Therefore, we propose a change detection model for processing evolving network streams which employs three different aggregating mechanisms for tracking the evolution of centrality metrics of a node. Our model is space and time efficient with memory less mechanisms and in other mechanisms at most we require the network of current time step T only. Additionally, we also compare the influence on different centralities’ fluctuations by the dynamics of real-world preferences. Consecutively, we apply our model in the user preference change detection task, reaching competitive levels of accuracy on Twitter network. © 2019, Springer International Publishing AG, part of Springer Nature.

2018

Biased Dynamic Sampling for Temporal Network Streams

Autores
Tabassum, S; Gama, J;

Publicação
Complex Networks and Their Applications VII - Volume 1 Proceedings The 7th International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2018, Cambridge, UK, December 11-13, 2018.

Abstract
Considering the avalanche of evolving data and the memory constraints, streaming networks’ sampling has gained much attention in the recent decade. However, samples choosing data uniformly from the beginning to the end of a temporal stream are not very relevant for temporally evolving networks where recent activities are more important than the old events. Moreover, the relationships also change overtime. Recent interactions are evident to show the current status of relationships, nevertheless some old stronger relations are also substantially significant. Considering the above issues we propose a fast memory less dynamic sampling mechanism for weighted or multi-graph high-speed streams. For this purpose, we use a forgetting function with two parameters that help introduce biases on the network based on time and relationship strengths. Our experiments on real-world data sets show that our samples not only preserve the basic properties like degree distributions but also maintain the temporal distribution correlations. We also observe that our method generates samples with increased efficiency. It also outperforms current sampling algorithms in the area. © 2019, Springer Nature Switzerland AG.

2020

On fast and scalable recurring link's prediction in evolving multi-graph streams

Autores
Tabassum, S; Veloso, B; Gama, J;

Publicação
NETWORK SCIENCE

Abstract
The link prediction task has found numerous applications in real-world scenarios. However, in most of the cases like interactions, purchases, mobility, etc., links can re-occur again and again across time. As a result, the data being generated is excessively large to handle, associated with the complexity and sparsity of networks. Therefore, we propose a very fast, memory-less, and dynamic sampling-based method for predicting recurring links for a successive future point in time. This method works by biasing the links exponentially based on their time of occurrence, frequency, and stability. To evaluate the efficiency of our method, we carried out rigorous experiments with massive real-world graph streams. Our empirical results show that the proposed method outperforms the state-of-the-art method for recurring links prediction. Additionally, we also empirically analyzed the evolution of links with the perspective of multi-graph topology and their recurrence probability over time.

2021

Dynamic Topic Modeling Using Social Network Analytics

Autores
Tabassum, S; Gama, J; Azevedo, P; Teixeira, L; Martins, C; Martins, A;

Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE (EPIA 2021)

Abstract
Topic modeling or inference has been one of the well-known problems in the area of text mining. It deals with the automatic categorisation of words or documents into similarity groups also known as topics. In most of the social media platforms such as Twitter, Instagram, and Facebook, hashtags are used to define the content of posts. Therefore, modelling of hashtags helps in categorising posts as well as analysing user preferences. In this work, we tried to address this problem involving hashtags that stream in real-time. Our approach encompasses graph of hashtags, dynamic sampling and modularity based community detection over the data from a popular social media engagement application. Further, we analysed the topic clusters' structure and quality using empirical experiments. The results unveil latent semantic relations between hashtags and also show frequent hashtags in a cluster. Moreover, in this approach, the words in different languages are treated synonymously. Besides, we also observed top trending topics and correlated clusters.

  • 2
  • 3