Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Orlando Frazão

2014

Silica microspheres array strain sensor

Autores
Ferreira, MS; Santos, JL; Frazao, O;

Publicação
OPTICS LETTERS

Abstract
An optical fiber sensor based on arrays of silica microspheres is proposed. The microspheres are produced separately using a fusion splicer and then also connected in series by fusion splicing. Three different sensors are presented, differing by the number of microspheres. Due to the geometry of the structures, different behaviors are obtained in strain measurements. Sensors with an odd number of microspheres are more sensitive to strain than the ones with an even number of microspheres. Additionally, the sensing heads are subjected to temperature where a sensitivity of 20.3 pm/degrees C is obtained in a range of 200 degrees C. (C) 2014 Optical Society of America

2016

Temperature-Independent Multi-Parameter Measurement Based on a Tapered Bragg Fiber

Autores
Martins, TJM; Marques, MB; Roy, P; Jamier, R; Fevrier, S; Frazao, O;

Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
Temperature-independent strain and angle measurements are achieved resorting to a taper fabricated on a Bragg fiber using a CO2 laser. The characteristic bimodal interference of an untapered Bragg fiber is rendered multimode after taper fabrication and the resulting transmission spectra are analyzed as a function of strain, applied angle, and temperature variations. The intrinsic strain sensitivity exhibited by the Bragg fiber is increased 15 fold after tapering and reaches 22.68 pm/mu epsilon. The angle and temperature measurements are also performed with maximum sensitivities of 185.10 pm/deg and -12.20 pm/K, respectively. The difference in wavelength shift promoted by variations in strain, angle, and temperature for the two fringes studied is examined. Strain and angle sensing with little temperature sensitivity is achieved, presenting a response of 2.87 pm/mu epsilon and -57.31 pm/deg, respectively, for strain values up to 400 mu epsilon and angles up to 10 degrees. Simultaneous angle and strain measurements are demonstrated.

2013

Torsion sensor based on a figure-of-eight cavity fibre laser

Autores
Ferreira, MS; Santos, JL; Mergo, P; Frazao, O;

Publicação
LASER PHYSICS LETTERS

Abstract
A figure-of-eight based fibre laser cavity is proposed for the measurement of torsion. In one of the loops a section of photonic crystal fibre is inserted, acting both as an optical filter and the sensing head. The laser emission depends on the optical filter polarization and length. A single lasing band is achieved with a full width at half maximum of similar to 1.72 nm. The proposed sensor presents sensitivity to torsion of 7.13 pm/degree over a range of 180 degrees. This configuration can also be used to measure optical power variations. Besides, due to the properties of the optical filter this sensor presents low sensitivity to temperature.

2016

Fiber Fabry-Perot Interferometer for Curvature Sensing

Autores
Monteiro, CS; Ferreira, MS; Silva, SO; Kobelke, J; Schuster, K; Bierlich, J; Frazao, O;

Publicação
PHOTONIC SENSORS

Abstract
A curvature sensor based on an Fabry-Perot (FP) interferometer was proposed. A capillary silica tube was fusion spliced between two single mode fibers, producing an FP cavity. Two FP sensors with different cavity lengths were developed and subjected to curvature and temperature. The FP sensor with longer cavity showed three distinct operating regions for the curvature measurement. Namely, a linear response was shown for an intermediate curvature radius range, presenting a maximum sensitivity of 68.52 pm/m(-1). When subjected to temperature, the sensing head produced a similar response for different curvature radii, with a sensitivity varying from 0.84 pm/degrees C to 0.89 pm/degrees C, which resulted in a small cross-sensitivity to temperature when the FP sensor was subjected to curvature. The FP cavity with shorter length presented low sensitivity to curvature.

2013

Pressure Sensor based on an all-fiber Fabry-Perot interferometer for different gaseous environments

Autores
Silva, S; Coelho, L; Frazao, O;

Publicação
FIFTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS

Abstract
This work describes an all-fiber Fabry-Perot interferometer (FFPI) that is sensitive to gas pressure variations. The geometry of the air cavity consists on splicing a small section of silica rod with a large offset in between two singlemode fibers. It is shown that the FFPI sensor is sensitive to gas pressure variation and when submitted to different gaseous environments, namely carbon dioxide, nitrogen and oxygen, it presented different sensitivities of 6.2, 4.1 and 3.6 nm/MPa, respectively. This result is obtained due to refractive index difference between gases. The refractive index change on nitrogen environment by means of the gas pressure variation resulted in a sensitivity of 1526 nm/RIU. The response of the sensing device to temperature in air was also determined and a sensitivity of -14 pm/degrees C was attained.

2013

A simple, self-referenced, intensity-based optical fibre sensor for temperature measurements

Autores
Silva, RM; Baptista, JM; Santos, JL; Ribeiro, ABL; Araujo, FM; Ferreira, LA; Frazao, O;

Publicação
OPTICS COMMUNICATIONS

Abstract
A sensing configuration based on an intensity optical fibre sensor for temperature measurement is reported. Two sensing heads, with identical geometrical configuration, connected in series are implemented. Each sensing head is placed between two fibre Bragg gratings (FBGs), being able to provide a self-referenced measurement, and thus eliminate errors that may arise from undesired intensity fluctuations in the configuration. The first FBG, placed before the aluminium tube, acts as the reference FBG, while the second FBG, placed after the aluminium tube, acts as the signal FBG. It is observed that the amplitude of the signal FBG decays when temperature increases, due to the increase of the ferrules' gap and as result of the material thermal expansion. The temperature response has a behaviour that corresponds to a polynomial fit of third order. The crosstalk between the two sensing heads in series is analysed. The temperature sensitivities obtained in the intervals regions of [36, 48.5] degrees C and [64, 85] degrees C are 2.67 x 10(-3) degrees C-1 and 1.74 x 10(-4) degrees C-1, respectively. Ten sensing heads with this configuration can be multiplexed in series network topology.

  • 16
  • 89