Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Orlando Frazão

2018

A Brief Review of New Fiber Microsphere Geometries

Autores
Gomes, AD; Monteiro, CS; Silveira, B; Frazao, O;

Publicação
FIBERS

Abstract
A brief review of new fiber microsphere geometries is presented. Simple microspheres working as Fabry-Perot cavities are interrogated in reflection and in transmission. Two microspheres were also spliced together, and subjected to different physical parameters. These structures are an alternative solution for load measurement and, when read in transmission, it is also possible to apply strain. Moreover, the structure is capable of being used under extreme ambient temperatures up to 900 degrees C. Random signal in cleaved microspheres was demonstrated with the possibility of using it for random laser or sensing applications. All this work was developed at the Centre for Applied Photonics, INESC TEC.

2018

Bunimovich Stadium-Like Resonator for Randomized Fiber Laser Operation

Autores
Silveira, B; Gomes, A; Becker, M; Schneidewind, H; Frazao, O;

Publicação
PHOTONICS

Abstract
A silica resonator was demonstrated for random laser generation. The resonator consisted of a conventional microsphere fabricated in an optical fiber tip through electric arc discharge, and modifications to its geometry were carried out to create asymmetry inside the silica structure. The resulting Bunimovich stadium-like microsphere promotes multiple reflections with the boundaries, following the stochastic properties of dynamic billiards. The interference of the multiple scattered beams generates a random signal whose intensity was increased by sputter-coating the microstadium with a gold thin film. The random signal is amplified using an erbium-doped fiber amplifier (EDFA) in a ring cavity configuration with feedback, and lasing is identified as temporal and spectral random variations of the signal between consecutive measurements.

2018

Analysis of amplification in a fiber ring resonator with a fabry-perot cavity

Autores
Magalhaes, R; Silva, S; Frazao, O;

Publicação
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS

Abstract
The placement of an Erbium-doped Fiber Amplifier and a Fabry-Perot cavity inside a fiber ring resonator can generate a sinusoidal modulation in the optical signal obtained. The characterization of this behavior is achieved by changing the length of the Fabry-Perot cavity, which acts as a sensing device. A theoretical model of the optical signal modulation obtained with such configuration is also presented.

2018

Multi-Path Interferometer Structures with Cleaved Silica Microspheres

Autores
Gomes, AD; Silveira, B; Karami, F; Zibaii, MI; Latifi, H; Dellith, J; Becker, M; Rothhardt, M; Bartelt, H; Frazao, O;

Publicação
INTERFEROMETRY XIX

Abstract
Two multi-path interferometers were developed using cleaved silica microspheres. A microsphere on top of a singlemode fiber tip was cleaved with a focused ion beam. The asymmetry introduced in the structure generates a new set of optical paths due to random reflections inside the microsphere. The obtained reflection spectrum presents a random-like interferometric behavior with strong spectral modulation of around 3 dB amplitude. Two distinct regions can be observed when a fast Fourier transform is applied. The first involves two cavities at a lower frequency and the second region involves a band of frequencies that is originated by the random interferometric reflections. These two spectral characteristics can be separated using low-pass and high-pass filters, respectively. A correlation method was used to obtain a temperature response from the two-cavity component. A similar structure was also created in a microsphere of multimode fiber. The microsphere was cleaved by polishing the structure with a certain angle. The interference between the different optical paths can be seen as the superposition of several two-wave interferometers, which can be discriminated through signal processing. Temperature sensing was also explored with this structure. The sensitivity to temperature is more than 3-fold for smaller cavities. Moreover, a sensitivity enhancement is also verified if a correlation method is used.

2018

Ring-Down Technique Using Fiber-Based Linear Cavity for Remote Sensing

Autores
Silva, S; Frazao, O;

Publicação
IEEE Sensors Letters

Abstract

2019

High sensitivity strain sensor based on twin hollow microspheres

Autores
Monteiro, CS; Kobelke, J; Schuster, K; Bierlich, J; Silva, SO; Frazao, O;

Publicação
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS

Abstract
A sensor based on 2 hollow core microspheres is proposed. Each microsphere was produced separately through fusion splicing and then joined. The resultant structure is a Fabry-Perot interferometer with multiple interferences that can be approximated to a 4-wave interferometer. Strain characterization was attained for a maximum of 1350 mu epsilon, achieving a linear response with a sensitivity of 3.39 +/- 0.04 pm/mu epsilon. The fabrication technique, fast and with no chemical hazards, as opposed to other fabrication techniques, makes the proposed sensor a compelling solution for strain measurements in hash environments.

  • 24
  • 90