2020
Autores
Novais, S; Silva, SO; Frazao, O;
Publicação
MEASUREMENT
Abstract
The use of optical sensors inside the needle can improve targeting precision and can bring real-time information about the location of the needle tip if necessary, since a needle bends through insertion into the tissue. Therefore, the precise location of the needle tip is so important in percutaneous treatments. In the current experiment, a fiber sensor based on a Fabry-Perot (FP) cavity is described to measure the needle curvature. The sensor is fabricated by producing an air bubble between two sections of multimode fiber. The needle with the sensor therein was attached at one end and deformed by the application of movements. The sensor presents a sensitivity of -0.152 dB/m(-1) to the curvature measurements, with a resolution of 0.089 m(-1). The sensory structure revealed to be stable, obtaining a cross-sensitivity to be 0.03 m(-1)/degrees C.
2020
Autores
Magalhaes, R; Silva, S; Frazao, O;
Publicação
PHOTONIC SENSORS
Abstract
The proposed technique demonstrates a fiber ring resonator interrogated by an optical time domain reflectometer (OTDR), for intensity sensing. By using this methodology, a cavity round trip time of 2.85 mu s was obtained. For a proof of concept, a long-period grating was inserted in the resonant cavity operating as a curvature sensing device. A novel signal processing approach was outlined, regarding to the logarithmic behavior of the OTDR. Through analyzing the experimental results, an increase in the measured sensitivities was obtained by increasing applied bending. With curvatures performed from 1.8 m(-1) to 4.5 m(-1), the sensitivity values ranged from 2.94 dB center dot km(-1) to 5.15 dB center dot km(-1). In its turn, the sensitivities obtained presented a linear behavior when studied as a function of the applied curvature, following a slope of 0.86x10(-3) dB. The advantages of applying this technique were also discussed, demonstrating two similar fiber rings multiplexed in a series of configurations.
2020
Autores
Soares, L; Novais, S; Ferreira, A; Frazao, O; Silva, S;
Publicação
SENSORS
Abstract
A configuration of a refractometer sensor is described with the aim of optically detecting the crystallization process of paracetamol. The developed sensing head is based on a conventional cleaved multi-mode fiber. The fiber tip sensor structure was submitted to contact with the liquid of interest (paracetamol fully dissolved in 40% v/v of ethanol/water) and the crystallization process of paracetamol, induced with continued exposure to air, was monitored in real time.
2020
Autores
Linhares, CC; Santo, JE; Teixeira, RR; Coutinho, CP; Tavares, SMO; Pinto, M; Costa, JS; Mendes, H; Monteiro, CS; Rodrigues, AV; Frazão, O;
Publicação
EAI Endorsed Transactions on Energy Web
Abstract
Power transformers have an imperative role in the future developments of the electrical grids. Treated as crucial assets for transportation and distribution of electrical energy, transformers are currently being studied regarding to the integration of technologies aiming to diagnose problems and monitoring data of electrical power grid. Furthermore, environmental noise pollution has gained importance, especially in active units of the power grid, located near consumers, such as transformers. Transformers noise can be classified according to its source: core, windings and cooling. This study addresses an experimental characterization of one of the main causes of transformers core noise-magnetostriction of electrical steel. An evaluation of magnetostriction properties of electrical steel, including resistive strain gauges and Fiber Bragg Gratings (FBGs) measurements with an Epstein frame, are presented and discussed. The magnetic flux density influence on hysteretic strain behavior of magnetostriction was evaluated, as well as the effect of a clamping load on core joints. Nowadays, optical interrogators for Bragg gratings have a high acquisition frequencies and wavelength sensitivity when compared to former optical interrogation systems, allowing to evaluate physical phenomena without electromagnetic interference and with equivalent resolution of conventional strain gauges. © 2019 Cassiano C. Linhares et al.
2019
Autores
Martins, T; Gholipour, B; Piccinotti, D; MacDonald, KF; Peacock, AC; Frazao, O; Zheludev, NI;
Publicação
APL PHOTONICS
Abstract
We report on the experimental demonstration of an optical-fiber-integrated, nonvolatile transmission switching device. The operating mechanism exploits a cavity resonance spectral shift associated with an induced change in the refractive index of a high-index thin film on the polished side facet of the fiber. In the present case, a thermally induced amorphous-crystalline structural transition in a 500 nm layer of germanium antimony telluride at a distance of 500 nm from the core-cladding interface of an SMF-28 single-mode fiber delivers resonant transmission contrast >0.5 dB/mm at 1315 nm. Contrast is a function of active layer proximity to the core, while operating wavelength is determined by layer thickness-varying thickness by a few tens of nanometers can provide for tuning over the entire near-infrared telecoms spectral range. (C) 2019 Author(s).
2020
Autores
Viveiros, D; Amorim, VA; Maia, JM; Silva, S; Frazao, O; Jorge, PAS; Fernandes, LA; Marques, PVS;
Publicação
OPTICS AND LASER TECHNOLOGY
Abstract
First order off-axis fiber Bragg gratings (FBGs) were fabricated in a standard single mode fiber (SMF-28e) through femtosecond laser direct writing. A minimum offset distance between the grating and core center of 2.5 mu m was found to create a multimode section, which supports two separate fiber modes (LP0,1 and LP1,1), each split into two degenerate polarization modes. The resulting structure breaks the cylindrical symmetry of the fiber, introducing birefringence (approximate to 10(-4)) resulting in a polarization dependent Bragg wavelength for each mode. Based on the modal and birefringence behavior, three off-axis FBGs were fabricated with 3.0, 4.5 and 6.0 mu m offsets from the core center, and then characterized in strain, temperature, and curvature. The tested off-axis FBGs exhibited a similar strain sensitivity of similar to 1.14 pm/mu epsilon and a temperature sensitivity of similar to 12 pm/C. The curvature and orientation angle were simultaneously monitored by analyzing the intensity fluctuation and the wavelength shift of the LP1,1 Bragg resonance. A maximum curvature sensitivity of 0.53 dB/m(-1) was obtained for the off-axis FBG with a 3.0 mu m offset.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.