Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Orlando Frazão

2020

Optical recording of neural activity using a focused ion beam milled Fiber Optic Fabry-Perot

Autores
Zibaii, MI; Layeghi, A; Dargahi, L; Haghparast, A; Frazao, O;

Publicação
Journal of Science and Technological Researches

Abstract

2021

Nano-Displacement Measurement Using an Optical Drop-Shaped Structure

Autores
Robalinho, P; Frazao, O;

Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
This letter presents a new optical fiber structure with the capability of measuring nano-displacement. This device is composed by a cleaved fiber and a drop-shaped microstructure that is connected to the fiber cladding. This optical structure is responsible for the light beam division and the formation of new optical paths. The operation mode consists of the Vernier effect that allows achieving higher sensitivity than the currently sensors. During the experimental execution, displacement sensitivities of 1.05 +/- 0.01 nm , 15.1 +/- 0.1 nm, 24.7 +/- 0.3 nm and 28.3 +/- 0.3 nm , were achieved for the carrier, the fundamental of the envelope, the first harmonic and the second harmonic, respectively. The M-factor of 27 was attained, allowing a minimum resolution of 0.7 nm. In addition to displacement sensing, the proposed optical sensor can be used as a cantilever enabling non-evasive measurements.

2021

Colossal Enhancement of Strain Sensitivity Using the Push-Pull Deformation Method

Autores
Robalinho, P; Gomes, A; Frazao, O;

Publicação
IEEE SENSORS JOURNAL

Abstract
In this work, a colossal enhancement of strain sensitivities through the push-pull deformation method in interferometry is reported for the first time. For the demonstration of the new method, two cascaded interferometers in a fiber loop mirror are used. Usually, strain is applied at the fiber end of the interferometers. In this work, we propose applying strain at the middle of the two cascaded interferometers whereas the fiber ends of the sensor are fixed. Strain is then applied in the fusion region between the two-cascaded interferometers in a push-pull configuration, thus ensuring simultaneously the extension of one interferometer and the compression of the other. Although the carrier signal is maintained constant, the proposed technique induces a colossal enhancement of sensitivity in the envelope signal. Strain sensitivities up to 10000 pm/ $\mu \varepsilon $ are achieved.

2021

Experimental investigation of a strain gauge sensor based on Fiber Bragg Grating for diameter measurement

Autores
Cardoso, VHR; Caldas, P; Giraldi, MTR; Frazao, O; de Carvalho, CJR; Costa, JCWA; Santos, JL;

Publicação
OPTICAL FIBER TECHNOLOGY

Abstract
A strain gauge sensor based on Fiber Bragg Grating (FBG) for diameter measurement is proposed and experimentally demonstrated. The sensor is easily fabricated inserting the FBG on the strain gauge-it was fabricated using a 3D printer-and fixing the FBG in two points of this structure. The idea is to vary the diameter of the structure. We developed two experimental setups, the first one is used to evaluate the response of the FBG to strain and the second one to assess the possibility of using the structure developed to monitor the desired parameter. The results demonstrated that the structure can be used as a way to monitor the diameter variation in some applications. The sensor presented a sensitivity of 0.5361 nm/mm and a good linear response of 0.9976 using the Strain Gauge with FBG and fused taper.

2021

Giant Displacement Sensitivity Using Push-Pull Method in Interferometry

Autores
Robalinho, P; Frazao, O;

Publicação
PHOTONICS

Abstract
We present a giant sensitivity displacement sensor combining the push-pull method and enhanced Vernier effect. The displacement sensor consists in two interferometers that are composed by two cleaved standard optical fibers coupled by a 3 dB coupler and combined with a double-sided mirror. The push pull-method is applied to the mirror creating a symmetrical change to the length of each interferometer. Furthermore, we demonstrate that the Vernier effect has a maximum sensitivity of two-fold that obtained with a single interferometer. The combination of the push-pull method and the Vernier effect in the displacement sensors allows a sensitivity of 60 +/- 1 nm/mu m when compared with a single interferometer working in the same free spectral range. In addition, exploring the maximum performance of the displacement sensors, a sensitivity of 254 +/- 6 nm/mu m is achieved, presenting a M-factor of 1071 and M-Vernier of 1.9 corresponding to a resolution of 79 pm. This new solution allows the implementation of giant-sensitive displacement measurement for a wide range of applications.

2021

Thermally Stimulated Desorption Optical Fiber-Based Interrogation System: An Analysis of Graphene Oxide Layers' Stability

Autores
Raposo, M; Xavier, C; Monteiro, C; Silva, S; Frazao, O; Zagalo, P; Ribeiro, PA;

Publicação
PHOTONICS

Abstract
Thin graphene oxide (GO) film layers are being widely used as sensing layers in different types of electrical and optical sensor devices. GO layers are particularly popular because of their tuned interface reflectivity. The stability of GO layers is fundamental for sensor device reliability, particularly in complex aqueous environments such as wastewater. In this work, the stability of GO layers in layer-by-layer (LbL) films of polyethyleneimine (PEI) and GO was investigated. The results led to the following conclusions: PEI/GO films grow linearly with the number of bilayers as long as the adsorption time is kept constant; the adsorption kinetics of a GO layer follow the behavior of the adsorption of polyelectrolytes; and the interaction associated with the growth of these films is of the ionic type since the desorption activation energy has a value of 119 +/- 17 kJ/mol. Therefore, it is possible to conclude that PEI/GO films are suitable for application in optical fiber sensor devices; most importantly, an optical fiber-based interrogation setup can easily be adapted to investigate in situ desorption via a thermally stimulated process. In addition, it is possible to draw inferences about film stability in solution in a fast, reliable way when compared with the traditional ones.

  • 30
  • 90