2011
Autores
Simoes, E; Abe, I; Oliveira, J; Frazao, O; Caldas, P; Pinto, JL;
Publicação
SENSORS AND ACTUATORS B-CHEMICAL
Abstract
In this work is studied the response of optical fiber long period grating (LPG) to changes of the refractive index of the external media relatively to variations of wavelength and in transmission. The response of the LPG to refractive index greater and lesser than to cladding is investigated. A nanolayer was deposited onto the fiber to increase the sensitivity of the LPG to refractive index of the external media higher than cladding. The film modifies the rates of effective modes of cladding, thus improving the response of the changes in the refractive index of the external media higher than that in the refractive index of the cladding (n(cl) approximate to 1.457). The Langmuir-Blodgett technique was used for the deposition of the nanolayer.
2010
Autores
Abe, I; Oliveira, J; Simoes, E; Caldas, P; Frazao, O;
Publicação
TALANTA
Abstract
The analysis of the quality of food oils is of paramount importance because the degradation of oils can lead to formation of harmful substances to the human organism With the increase of the degradation of oils an increase of its refractive index occurs The objective of this work is to develop and to characterize optical fiber refractometers sensitive to variations of refractive index of food oil samples The optical fiber refractometers thanks to the intrinsic characteristics make them suitable for monitoring the quality of frying oils They possess the advantages to require small volumes of sample for analysis do not contaminate the sample and supply the response in real time In this work a long period grating (LPG) as refractometer is used because of their sensitivity to refractive index of the external media degraded and not degraded frying oil samples The oil samples had been characterized by the analysis of total polar components The refractive index of oil is above 1 47 this region the LPG does not show enough sensitivity a nanolayer of an organic material was coated onto the fiber Using the Langmuir-Blodgett technique the response of LPG is modified according to the refractive index and thickness of the film (he deposition of the film modifies the rates effective modes of cladding thus improving the response of the changes in the refractive index of the external media higher than that the refractive index of the cladding (n = 1 457)
2010
Autores
Simoes, E; Abe, I; Oliveira, J; Pinto, JL; Caldas, P; Frazao, O;
Publicação
FOURTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS
Abstract
In this work the behavior of an optical fiber Long Period Grating (LPG) refractometer with the variations of the surrounding refractive index is discussed. The objective is to characterize optical fiber refractometers sensitive to surrounding refractive index, higher and lower than the cladding. For values of surrounding refractive index higher than the cladding, the LPG does not show enough sensitivity. For this reason, a nanolayer of an organic material was coated onto the fiber, using the Langmuir-Blodgett technique. We characterized LPG covered with different nanolayers thickness (110 and 120 nm) relatively to changes in surrounding refractive index.
2012
Autores
Martins, H; Marques, MB; Jorge, P; Cordeiro, CMB; Frazao, O;
Publicação
MICRO-STRUCTURED AND SPECIALTY OPTICAL FIBRES
Abstract
An intensity curvature sensor using a Photonic Crystal Fiber (PCF) with three coupled cores is proposed. The three cores were aligned and there was an air hole between each two consecutive cores. The fiber had a low air filling fraction, which means that the cores remain coupled in the wavelength region studied. Due to this coupling interference is obtained in the fiber output even if just a single core is illuminated. A configuration using transmission interrogation, which used a section fiber with 0.08 m of PCF as the sensing head, and a configuration using reflection interrogation, which used a section fiber with 0.13 m of PCF as the sensing head, were characterized and compared for curvature sensing. When the fiber is bended along the plane of the cores, one of the lateral cores will be stretched and the other compressed. This changes the coupling between the three cores, changing the optical power intensity. The sensibility of the sensing head was strongly dependent on the direction of bending, having its maximum when the bending direction was along the plane of the cores. A maximum curvature sensitivity of 1.8 dB. m was demonstrated between 0 m and 2.8 m.
2011
Autores
Zibaii, MI; Frazão, O; Jorge, PAS; Zibaii, MI; Latifi, H;
Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS
Abstract
A single-mode nonadiabatic tapered optical fiber (NATOF) sensor was inserted into a fiber loop mirror (FLM) enabling us to tune its sensitivity towards refractive index (RI). The NATOF was fabricated by the heat pulling method, utilizing a CO laser. The adjustment of the polarization controllers (PCs) inserted in loop allowed us to excite different cladding modes in the interferometric taper resulting in different optical paths for the clockwise and the counterclockwise beams. By variation of the PCs' settings, the sensitivity of the sensor for RI in the range from 1.3380 to 1.3510 could be tuned from 876.24 to 1233.07 nm/RIU. Experimental results show that the sensitivity to the external RI increased with the order of the cladding mode.
2011
Autores
Queiros, RB; Silva, SO; Noronha, JP; Frazao, O; Jorge, P; Aguilar, G; Marques, PVS; Sales, MGF;
Publicação
BIOSENSORS & BIOELECTRONICS
Abstract
Cyanobacteria deteriorate the water quality and are responsible for emerging outbreaks and epidemics causing harmful diseases in Humans and animals because of their toxins. Microcystin-LR (MCT) is one of the most relevant cyanotoxin, being the most widely studied hepatotoxin. For safety purposes, the World Health Organization recommends a maximum value of 1 mu g L(-1) of MCT in drinking water. Therefore, there is a great demand for remote and real-time sensing techniques to detect and quantify MCT. In this work a Fabry-Perot sensing probe based on an optical fibre tip coated with a MCT selective thin film is presented. The membranes were developed by imprinting MCT in a sol-gel matrix that was applied over the tip of the fibre by dip coating. The imprinting effect was obtained by curing the sol-gel membrane, prepared with (3-aminopropyl) trimethoxysilane (APTMS), diphenyl-dimethoxysilane (DPDMS), tetraethoxysilane (TEOS), in the presence of MCT. The imprinting effect was tested by preparing a similar membrane without template. In general, the fibre Fabry-Perot with a Molecular Imprinted Polymer (MIP) sensor showed low thermal effect, thus avoiding the need of temperature control in field applications. It presented a linear response to MCT concentration within 0.3-1.4 mu g L(-1) with a sensitivity of -12.4 +/- 0.7 nm L mu g(-1). The corresponding Non-Imprinted Polymer (NIP) displayed linear behaviour for the same MCT concentration range, but with much less sensitivity, of -5.9 +/- 0.2 nm L mu g(-1). The method shows excellent selectivity for MCT against other species co-existing with the analyte in environmental waters. It was successfully applied to the determination of MCT in contaminated samples. The main advantages of the proposed optical sensor include high sensitivity and specificity, low-cost, robustness, easy preparation and preservation.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.