Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Orlando Frazão

2009

Modal Interferometer Based on ARROW Fiber for Strain and Temperature Measurement

Autores
Aref, SH; Frazao, O; Caldas, P; Ferreira, LA; Araujo, FM; Santos, JL; Latifi, H; Foy, P; Hawkins, T; Ballato, J; Her, T; Farahi, F;

Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
In this letter, interferometric sensors based on antiresonance reflecting optical waveguide (ARROW) fibers were developed, and used to sense strain and temperature. Two types of solid-ore ARROW fibers were considered and signal demodulation was achieved by using the white light interferometric technique. The ARROW fibers have two rings of high index rods arranged in a hexagonal structure with a lattice constant of 6 m. The different sizes of the rods cause different measurand sensitivities for the two fibers. Resolutions of +/- 1.1 mu epsilon and +/- 0.07 degrees C were achieved for strain and temperature, respectively.

2012

Intrinsic Fabry-Perot Cavity Sensor Based on Etched Multimode Graded Index Fiber for Strain and Temperature Measurement

Autores
Tafulo, PAR; Jorge, PAS; Santos, JL; Araujo, FM; Frazao, O;

Publicação
IEEE SENSORS JOURNAL

Abstract
Two Fabry-Perot interferometers based on chemical etching in multimode graded index fibers are fabricated and their response to temperature and strain are compared. Chemical etching is applied in the graded index fiber end creating an air cavity. The interferometric cavity is formed when the graded index fiber with the air concavity is spliced to a single-mode fiber. The intrinsic sensors present high sensitivity to strain and low sensitivity to temperature. For the 62.5 mu m core fiber, sensitivities of 6.99 pm/mu epsilon and, 0.95 pm/degrees C were obtained for strain and temperature, respectively. The sensor based in the 50 mu m core fiber, on the other hand, presented sensitivities of 4.06 pm/mu epsilon and -0.84 pm/degrees C for strain and temperature, respectively.

2011

Fiber-Optic Inclinometer Based on Taper Michelson Interferometer

Autores
Amaral, LMN; Frazao, O; Santos, JL; Ribeiro, ABL;

Publicação
IEEE SENSORS JOURNAL

Abstract
A compact fiber-optic inclinometer based on a fiber-taper Michelson interferometric sensor is constructed and demonstrated. The sensor consist of a single symmetrically taper waist of 80 mu m distanced 30 mm from the single-mode fiber end-tip right-angled cleaved. The amplitude of the bending angle of the fiber taper interferometer is obtained by passive interferometric interrogation based on the generation of two quadrature phase-shifted signals from two fiber Bragg gratings with different resonant wavelengths. Optical phase-to-bending sensitivity of similar to 1.13 rad/degree and a bend angle resolution of similar to 0.014 degree/root Hz were achieved.

2006

Discrimination of temperature, strain, and transverse load by using fiber Bragg gratings in a twisted configuration

Autores
Silva, SFO; Frazao, O; Santos, JL; Araujo, FM; Ferreira, LA;

Publicação
IEEE SENSORS JOURNAL

Abstract
A sensing head based on two fiber Bragg gratings arranged in a twisted configuration is proposed to measure three parameters simultaneously, namely 1) temperature, 2) strain, and 3) transverse load. One of the gratings is impressed into a high-birefringence fiber that provides two distinct spectral signatures, which, together with the signature of the second grating and the geometric characteristics of the sensing head, enable the degrees of freedom required to achieve the simultaneous measurement functionality. The resolutions achieved with this configuration for the measurement of temperature, strain, and transverse load are +/- 3.1 degrees C, +/- 46 mu epsilon, and +/- 0.01 N/mm, respectively.

2012

Curvature and Temperature Discrimination Using Multimode Interference Fiber Optic Structures-A Proof of Concept

Autores
Silva, S; Pachon, EGP; Franco, MAR; Jorge, P; Santos, JL; Xavier Malcata, FX; Cordeiro, CMB; Frazao, O;

Publicação
JOURNAL OF LIGHTWAVE TECHNOLOGY

Abstract
Singlemode-multimode-singlemode fiber structures (SMS) based on distinct sections of a pure silica multimode fiber (coreless-MMF) with diameters of 125 and 55 mu m, were reported for the measurement of curvature and temperature. The sensing concept relies on the multimode interference that occurs in the coreless-MMF section and, in accordance with the length of the MMF section used, two fiber devices were developed: one based on a bandpass filter (self-image effect) and the other on a band-rejection filter. Maximum sensitivities of 64.7 nm.m and 13.08 pm/degrees C could be attained, for curvature and temperature, respectively, using the band-rejection filter with 55 mu m-MMF diameter. A proof of concept was also explored for the simultaneous measurement of curvature and temperature by means of the matrix method.

2012

Theoretical and Experimental Results of High-Birefringent Fiber Loop Mirror With an Output Port Probe

Autores
Silva, RM; Layeghi, A; Zibaii, MI; Latifi, H; Santos, JL; Frazao, O;

Publicação
JOURNAL OF LIGHTWAVE TECHNOLOGY

Abstract
Theoretical and experimental results of three different high-birefringent fiber loop mirrors with output ports are analyzed. For theoretical model, the Jones matrix analysis is used. The theoretical studies present similar results for all experimental configurations. The last configuration is tested as an interrogation system where the spectral response arises from the combination of the reference signal modulated by the sensor signal. The configuration is characterized in strain with the phase changes recovered from two quadrature phase signals, providing a sensitivity of 16 mrad/mu epsilon with a resolution of 1.9 mu epsilon.

  • 75
  • 90