Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Orlando Frazão

2016

[INVITED] New advances in fiber cavity ring-down technology

Autores
Silva, SO; Magalhaes, R; Marques, MB; Frazao, O;

Publicação
OPTICS AND LASER TECHNOLOGY

Abstract
A brief review in the cavity ring-down technique (CRD) is presented. In this review, there will only be considered the conventional fiber CRD configuration, i.e., there will only be presented researches involving cavities with two couplers with 99:1 ratios, due to the large amount of publications involving this spectroscopy method. The presented survey is divided in different topics related to the measurement of physical parameters, such as strain and temperature, curvature, pressure, refractive index, gas and biochemical sensing.

2015

A fiber optic buckle transducer for measurement of in vitro tendon strain

Autores
Roriz, P; Ramos, A; Marques, MB; Simoes, JA; Frazao, O;

Publicação
24TH INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS

Abstract
The purpose of the present study is to present a prototype of a fiber optic based buckle transducer suitable for measuring strain caused by stretching of a tendon. The device has an E-shape and its central arm is instrumented with a fiber Bragg grating (FBG) sensor. The tendon adjusts to the E-form in a fashion that when it is stretched the central arm bends causing a shift of the Bragg's wavelength (lambda(B)) that is proportional to the amount of strain. This prototype is presented as an alternative to conventional strain gauge (SG) buckle transducers.

2016

Acetone evaporation and water vapor detection using a caterpillar-like microstructured fiber

Autores
Gomes, AD; Ferreira, MFS; Moura, JP; Andre, RM; Kobelke, J; Bierlich, J; Wondraczek, K; Schuster, K; Frazao, O;

Publicação
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS

Abstract
A new microstructured optical fiber is presented as a sensor of acetone evaporation. Sensing is performed by observing the time response of the reflected signal at 1550 nm when the device is dipped in acetone or a 50% acetone-50% water mixture. The sensor consists on a caterpillar-like microstructured fiber spliced to a single-mode fiber, where the spliced end of the sensor has a transversal microfluidic channel etched using focused ion beam. Upon heating, different behaviors are visible between the dipping and the evaporation of acetone. The sensor is able to track the evaporation of acetone and to distinguish between pure acetone and a 50% acetone-50% water mixture. The sensor is also able to detect when the acetone in a mixture with water is fully evaporated. The detection of water vapor with no particular orientation of the sensor is achieved due to the presence of the microfluidic channels. (c) 2016 Wiley Periodicals, Inc.

2015

Acetone evaporation monitoring using a caterpillar-like microstructured fiber

Autores
Gomes, AD; Ferreira, MFS; Moura, JP; Andre, RM; Silva, SO; Kobelke, J; Bierlich, J; Wondraczek, K; Schuster, K; Frazao, O;

Publicação
24TH INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS

Abstract
A new microstructured optical fiber is demonstrated to detect acetone evaporation by observing the time response of the reflected signal at 1550nm. The sensor consists on a caterpillar-like fiber, with a transversal microfluidic channel created with a Focused Ion Beam technique, spliced to a single-mode fiber. Different stages were visible between the dipping and the evaporation of acetone and of a mixture of water and acetone. It was also possible to detect the presence of water vapor.

2015

Ammonia Sensing System Based on Wavelength Modulation Spectroscopy

Autores
Viveiros, D; Ferreira, J; Silva, SO; Ribeiro, J; Flores, D; Santos, JL; Frazao, O; Baptista, JM;

Publicação
PHOTONIC SENSORS

Abstract
A sensing system in the near infrared region has been developed for ammonia sensing based on the wavelength modulation spectroscopy (WMS) principle. The WMS is a rather sensitive technique for detecting atomic/molecular species, presenting the advantage that it can be used in the near-infrared region by using the optical telecommunications technology. In this technique, the laser wavelength and intensity were modulated by applying a sine wave signal through the injection current, which allowed the shift of the detection bandwidth to higher frequencies where laser intensity noise was typically lower. Two multi-pass cells based on free space light propagation with 160 cm and 16 cm of optical path length were used, allowing the redundancy operation and technology validation. This system used a diode laser with an emission wavelength at 1512.21 nm, where NH3 has a strong absorption line. The control of the NH3 gas sensing system, as well as acquisition, processing and data presentation was performed.

2015

Bragg Grating Fabrication on Tapered Fiber Tips based on Focused Ion Beam Milling

Autores
Andre, RM; Becker, M; Dellith, J; Rothhardt, M; Zibaii, MI; Latifi, H; Marques, MB; Bartelt, H; Frazao, O;

Publicação
24TH INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS

Abstract
Focused ion beam milling is used on chemically etched tapered fiber tips to create fiber Bragg gratings. These fiber Bragg gratings are based on a modulation of silica and external medium. This leads to a wide and structured spectrum obtained due to imperfections and the inherent structure of the tip. The fiber Bragg gratings presented are very short and have a length of 27 mu m and 43 mu m and are milled on the tapered fiber tip. They are characterized in the high temperature range 350-850 degrees C and a sensitivity of 14.4 pm/K is determined.

  • 1
  • 89