Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Rui Costa Martins

2024

Painless Artificial Intelligence Point-of-Care hemogram diagnosis in Companion Animals

Autores
Barroso, TG; Costa, JM; Gregório, AH; Martins, RC;

Publicação

Abstract
Quantification of erythrocytes and leukocytes is an essential aspect of hemogram diagno- 23 sis in Veterinary Medicine. Flow cytometry analysis, laser scattering, and impedance detection are 24 standard laboratory techniques, verified by manual microscopy counting. Although single-cell scat- 25 tering is already used as a standard technology for differentiating cell counts in flow cytometry, it 26 requires capillary cell separation. The current study investigates the scattering characteristics of 27 whole blood to identify correlations with erythrocytes and leukocytes counts. The scattering infor- 28 mation present in blood samples can be classified into three types: i) geometrical scattering, which 29 occurs when non-absorbed light is reflected and scattered, ii) Mie scattering, which happens when 30 light is scattered by particles of a similar size to the wavelength, and iii) Rayleigh scattering, which occurs when light is scattered by particles that are smaller than the incident light wavelength. In 32 this study, we investigate the scattering correction coefficients of dog blood absorption spectra in 33 the visible-near infrared range, to establish direct correlations with erythrocytes and leukocytes 34 counts, using multivariate linear regression. Our findings demonstrate the possibility of using the 35 scattering properties of dog blood, which is a step towards the existence of a portable and miniatur- 36 ized hemogram diagnosis in Veterinary Clinics worldwide.

2014

Spectrometric differentiation of yeast strains using minimum volume increase and minimum direction change clustering criteria

Autores
Fachada, N; Figueiredo, MAT; Lopes, VV; Martins, RC; Rosa, AC;

Publicação
PATTERN RECOGNITION LETTERS

Abstract
This paper proposes new clustering criteria for distinguishing Saccharomyces cerevisiae (yeast) strains using their spectrometric signature. These criteria are introduced in an agglomerative hierarchical clustering context, and consist of: (a) minimizing the total volume of clusters, as given by their respective convex hulls; and, (b) minimizing the global variance in cluster directionality. The method is deterministic and produces dendrograms, which are important features for microbiologists. A set of experiments, performed on yeast spectrometric data and on synthetic data, show the new approach outperforms several well-known clustering algorithms, including techniques commonly used for microorganism differentiation.

  • 9
  • 9