Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Ricardo Gonçalves Macedo

2023

Taming Metadata-intensive HPC Jobs Through Dynamic, Application-agnostic QoS Control

Autores
Macedo, R; Miranda, M; Tanimura, Y; Haga, J; Ruhela, A; Harrell, SL; Evans, RT; Pereira, J; Paulo, J;

Publicação
2023 IEEE/ACM 23RD INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING, CCGRID

Abstract
Modern I/O applications that run on HPC infrastructures are increasingly becoming read and metadata intensive. However, having multiple applications submitting large amounts of metadata operations can easily saturate the shared parallel file system's metadata resources, leading to overall performance degradation and I/O unfairness. We present PADLL, an application and file system agnostic storage middleware that enables QoS control of data and metadata workflows in HPC storage systems. It adopts ideas from Software-Defined Storage, building data plane stages that mediate and rate limit POSIX requests submitted to the shared file system, and a control plane that holistically coordinates how all I/O workflows are handled. We demonstrate its performance and feasibility under multiple QoS policies using synthetic benchmarks, real-world applications, and traces collected from a production file system. Results show that PADLL can enforce complex storage QoS policies over concurrent metadata-aggressive jobs, ensuring fairness and prioritization.

2021

PAIO: A Software-Defined Storage Data Plane Framework

Autores
Macedo, R; Tanimura, Y; Haga, J; Chidambaram, V; Pereira, J; Paulo, J;

Publicação
CoRR

Abstract

2023

Diagnosing applications' I/O behavior through system call observability

Autores
Esteves, T; Macedo, R; Oliveira, R; Paulo, J;

Publicação
2023 53RD ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS WORKSHOPS, DSN-W

Abstract
We present DIO, a generic tool for observing inefficient and erroneous I/O interactions between applications and in-kernel storage systems that lead to performance, dependability, and correctness issues. DIO facilitates the analysis and enables near real-time visualization of complex I/O patterns for data-intensive applications generating millions of storage requests. This is achieved by non-intrusively intercepting system calls, enriching collected data with relevant context, and providing timely analysis and visualization for traced events. We demonstrate its usefulness by analyzing two production-level applications. Results show that DIO enables diagnosing resource contention in multi-threaded I/O that leads to high tail latency and erroneous file accesses that cause data loss.

2023

Toward a Practical and Timely Diagnosis of Application's I/O Behavior

Autores
Esteves, T; Macedo, R; Oliveira, R; Paulo, J;

Publicação
IEEE ACCESS

Abstract
We present DIO, a generic tool for observing inefficient and erroneous I/O interactions between applications and in-kernel storage backends that lead to performance, dependability, and correctness issues. DIO eases the analysis and enables near real-time visualization of complex I/O patterns for data-intensive applications generating millions of storage requests. This is achieved by non-intrusively intercepting system calls, enriching collected data with relevant context, and providing timely analysis and visualization for traced events. We demonstrate its usefulness by analyzing four production-level applications. Results show that DIO enables diagnosing inefficient I/O patterns that lead to poor application performance, unexpected and redundant I/O calls caused by high-level libraries, resource contention in multithreaded I/O that leads to high tail latency, and erroneous file accesses that cause data loss. Moreover, through a detailed evaluation, we show that, when comparing DIO's inline diagnosis pipeline with a similar state-of-the-art solution, our system captures up to 28x more events while keeping tracing performance overhead between 14% and 51%.

2021

BDUS

Autores
Faria, A; Macedo, R; Pereira, J; Paulo, J;

Publicação
Proceedings of the 14th ACM International Conference on Systems and Storage

Abstract

  • 3
  • 3