Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Gonçalo Campos Gonçalves

2023

Using Digital Tools to Study the Health of Adults Born Preterm at a Large Scale: e-Cohort Pilot Study

Autores
Lorthe, E; Santos, C; Ornelas, JP; Doetsch, JN; Marques, SCS; Teixeira, R; Santos, AC; Rodrigues, C; Goncalves, G; Sousa, PF; Lopes, JC; Rocha, A; Barros, H;

Publicação
JOURNAL OF MEDICAL INTERNET RESEARCH

Abstract
Background: Preterm birth is a global health concern. Its adverse consequences may persist throughout the life course, exerting a potentially heavy burden on families, health systems, and societies. In high-income countries, the first children who benefited from improved care are now adults entering middle age. However, there is a clear gap in the knowledge regarding the long-term outcomes of individuals born preterm. Objective: This study aimed to assess the feasibility of recruiting and following up an e-cohort of adults born preterm worldwide and provide estimations of participation, characteristics of participants, the acceptability of questions, and the quality of data collected. Methods: We implemented a prospective, open, observational, and international e-cohort pilot study (Health of Adult People Born Preterm-an e-Cohort Pilot Study [HAPP-e]). Inclusion criteria were being an adult (aged =18 years), born preterm (<37 weeks of gestation), having internet access and an email address, and understanding at least 1 of the available languages. A large, multifaceted, and multilingual communication strategy was established. Between December 2019 and June 2021, inclusion and repeated data collection were performed using a secured web platform. We provided descriptive statistics regarding participation in the e-cohort, namely, the number of persons who registered on the platform, signed the consent form, initiated and completed the baseline questionnaire, and initiated and completed the follow-up questionnaire. We also described the main characteristics of the HAPP-e participants and provided an assessment of the quality of the data and the acceptability of sensitive questions. Results: As of December 31, 2020, a total of 1004 persons had registered on the platform, leading to 527 accounts with a confirmed email and 333 signed consent forms. A total of 333 participants initiated the baseline questionnaire. All participants were invited to follow-up, and 35.7% (119/333) consented to participate, of whom 97.5% (116/119) initiated the follow-up questionnaire. Completion rates were very high both at baseline (296/333, 88.9%) and at follow-up (112/116, 96.6%). This sample of adults born preterm in 34 countries covered a wide range of sociodemographic and health characteristics. The gestational age at birth ranged from 23+6 to 36+6 weeks (median 32, IQR 29-35 weeks). Only 2.1% (7/333) of the participants had previously participated in a cohort of individuals born preterm. Women (252/333, 75.7%) and highly educated participants (235/327, 71.9%) were also overrepresented. Good quality data were collected thanks to validation controls implemented on the web platform. The acceptability of potentially sensitive questions was excellent, as very few participants chose the I prefer not to say option when available. Conclusions: Although we identified room for improvement in specific procedures, this pilot study confirmed the great potential for recruiting a large and diverse sample of adults born preterm worldwide, thereby advancing research on adults born preterm.

2024

Patterns of Data Anonymization

Autores
Monteiro, M; Correia, FF; Queiroz, PGG; Ramos, R; Trigo, D; Gonçalves, G;

Publicação
Proceedings of the 29th European Conference on Pattern Languages of Programs, People, and Practices, EuroPLoP 2024, Irsee, Germany, July 3-7, 2024

Abstract
Over the years, sensitive data has been growing in software systems. To comply with ethical and legal requirements, the General Data Protection Regulation (GDPR) recommends using pseudonymization and anonymization techniques to ensure appropriate protection and privacy of personal data. Many anonymization techniques have been described in the literature, such as generalization or suppression, but deciding which methods to use in different contexts is not a straightforward task. Furthermore, anonymization poses two major challenges: choosing adequate techniques for a given context and achieving an optimal level of privacy while maintaining the utility of the data for the context within which it is meant to be used. To address these challenges, this paper describes four new design patterns: Generalization, Hierarchical Generalization, Suppress Outliers, and Relocate Outliers, building on existing literature to offer solutions for common anonymization challenges, including avoiding linkage attacks and managing the privacy-utility trade-off. © 2024 Copyright held by the owner/author(s).

2025

DataSHIELD: Mitigating disclosure risk in a multi-site federated analysis platform

Autores
Demetris Avraam; Rebecca C Wilson; Noemi Aguirre Chan; Soumya Banerjee; Tom R P Bishop; Olly Butters; Tim Cadman; Luise Cederkvist; Liesbeth Duijts; Xavier Escribà Montagut; Hugh Garner; Gonçalo Gonçalves; Juan R González; Sido Haakma; Mette Hartlev; Jan Hasenauer; Manuel Huth; Eleanor Hyde; Vincent W V Jaddoe; Yannick Marcon; Michaela Th Mayrhofer; Fruzsina Molnar-Gabor; Andrei Scott Morgan; Madeleine Murtagh; Marc Nestor; Anne-Marie Nybo Andersen; Simon Parker; Angela Pinot de Moira; Florian Schwarz; Katrine Strandberg-Larsen; Morris A Swertz; Marieke Welten; Stuart Wheater; Paul Burton;

Publicação
Bioinformatics Advances

Abstract
Abstract Motivation The validity of epidemiologic findings can be increased using triangulation, i.e., comparison of findings across contexts, and by having sufficiently large amounts of relevant data to analyse. However, access to data is often constrained by practical considerations and by ethico-legal and data governance restrictions. Gaining access to such data can be time-consuming due to the governance requirements associated with data access requests to institutions in different jurisdictions. Resutls DataSHIELD is a software solution which enables remote analysis without the need for data transfer (federated analysis). DataSHIELD is a scientifically mature, open-source data access and analysis platform aligned with the Five Safes framework, the international framework governing safe research access to data. It allows real-time analysis while mitigating disclosure risk through an active multi-layer system of disclosure-preventing mechanisms. This combination of real-time remote statistical analysis, disclosure prevention mechanisms, and federation capabilities makes DataSHIELD a solution for addressing many of the technical and regulatory challenges in performing the large-scale statistical analysis of health and biomedical data. This paper describes the key components that comprise the disclosure protection system of DataSHIELD. These broadly fall into three classes: (i) system protection elements, (ii) analysis protection elements, and (iii) governance protection elements.

  • 2
  • 2