2023
Autores
Lorthe, E; Santos, C; Ornelas, JP; Doetsch, JN; Marques, SCS; Teixeira, R; Santos, AC; Rodrigues, C; Goncalves, G; Sousa, PF; Lopes, JC; Rocha, A; Barros, H;
Publicação
JOURNAL OF MEDICAL INTERNET RESEARCH
Abstract
Background: Preterm birth is a global health concern. Its adverse consequences may persist throughout the life course, exerting a potentially heavy burden on families, health systems, and societies. In high-income countries, the first children who benefited from improved care are now adults entering middle age. However, there is a clear gap in the knowledge regarding the long-term outcomes of individuals born preterm. Objective: This study aimed to assess the feasibility of recruiting and following up an e-cohort of adults born preterm worldwide and provide estimations of participation, characteristics of participants, the acceptability of questions, and the quality of data collected. Methods: We implemented a prospective, open, observational, and international e-cohort pilot study (Health of Adult People Born Preterm-an e-Cohort Pilot Study [HAPP-e]). Inclusion criteria were being an adult (aged =18 years), born preterm (<37 weeks of gestation), having internet access and an email address, and understanding at least 1 of the available languages. A large, multifaceted, and multilingual communication strategy was established. Between December 2019 and June 2021, inclusion and repeated data collection were performed using a secured web platform. We provided descriptive statistics regarding participation in the e-cohort, namely, the number of persons who registered on the platform, signed the consent form, initiated and completed the baseline questionnaire, and initiated and completed the follow-up questionnaire. We also described the main characteristics of the HAPP-e participants and provided an assessment of the quality of the data and the acceptability of sensitive questions. Results: As of December 31, 2020, a total of 1004 persons had registered on the platform, leading to 527 accounts with a confirmed email and 333 signed consent forms. A total of 333 participants initiated the baseline questionnaire. All participants were invited to follow-up, and 35.7% (119/333) consented to participate, of whom 97.5% (116/119) initiated the follow-up questionnaire. Completion rates were very high both at baseline (296/333, 88.9%) and at follow-up (112/116, 96.6%). This sample of adults born preterm in 34 countries covered a wide range of sociodemographic and health characteristics. The gestational age at birth ranged from 23+6 to 36+6 weeks (median 32, IQR 29-35 weeks). Only 2.1% (7/333) of the participants had previously participated in a cohort of individuals born preterm. Women (252/333, 75.7%) and highly educated participants (235/327, 71.9%) were also overrepresented. Good quality data were collected thanks to validation controls implemented on the web platform. The acceptability of potentially sensitive questions was excellent, as very few participants chose the I prefer not to say option when available. Conclusions: Although we identified room for improvement in specific procedures, this pilot study confirmed the great potential for recruiting a large and diverse sample of adults born preterm worldwide, thereby advancing research on adults born preterm.
2024
Autores
Monteiro, M; Correia, FF; Queiroz, PGG; Ramos, R; Trigo, D; Gonçalves, G;
Publicação
Proceedings of the 29th European Conference on Pattern Languages of Programs, People, and Practices, EuroPLoP 2024, Irsee, Germany, July 3-7, 2024
Abstract
Over the years, sensitive data has been growing in software systems. To comply with ethical and legal requirements, the General Data Protection Regulation (GDPR) recommends using pseudonymization and anonymization techniques to ensure appropriate protection and privacy of personal data. Many anonymization techniques have been described in the literature, such as generalization or suppression, but deciding which methods to use in different contexts is not a straightforward task. Furthermore, anonymization poses two major challenges: choosing adequate techniques for a given context and achieving an optimal level of privacy while maintaining the utility of the data for the context within which it is meant to be used. To address these challenges, this paper describes four new design patterns: Generalization, Hierarchical Generalization, Suppress Outliers, and Relocate Outliers, building on existing literature to offer solutions for common anonymization challenges, including avoiding linkage attacks and managing the privacy-utility trade-off. © 2024 Copyright held by the owner/author(s).
2025
Autores
Demetris Avraam; Rebecca C Wilson; Noemi Aguirre Chan; Soumya Banerjee; Tom R P Bishop; Olly Butters; Tim Cadman; Luise Cederkvist; Liesbeth Duijts; Xavier Escribà Montagut; Hugh Garner; Gonçalo Gonçalves; Juan R González; Sido Haakma; Mette Hartlev; Jan Hasenauer; Manuel Huth; Eleanor Hyde; Vincent W V Jaddoe; Yannick Marcon; Michaela Th Mayrhofer; Fruzsina Molnar-Gabor; Andrei Scott Morgan; Madeleine Murtagh; Marc Nestor; Anne-Marie Nybo Andersen; Simon Parker; Angela Pinot de Moira; Florian Schwarz; Katrine Strandberg-Larsen; Morris A Swertz; Marieke Welten; Stuart Wheater; Paul Burton;
Publicação
Bioinformatics Advances
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.