Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CEGI

2024

Digitisation of patient preferences in palliative care: mobile app prototype

Autores
Ferreira, J; Ferreira, M; Fernandes, CS; Castro, J; Campos, MJ;

Publicação
BMJ SUPPORTIVE & PALLIATIVE CARE

Abstract
Background Engaging in advance care planning can be emotionally challenging, but gamification and technology are suggested as a potential solution.Objective Present the development stages of a mobile app prototype to improve quality of life for patients in palliative care.Design The study started with a comprehensive literature review to establish a foundation. Subsequently, interviews were conducted to validate the proposed features of the mobile application. Following the development phase, usability tests were conducted to evaluate the overall usability of the mobile application. Furthermore, an oral questionnaire was administered to understand user satisfaction about the implemented features.Results A three-phase testing approach was employed based on the chosen user-centred design methodology to obtain the results. Three iterations were conducted, with improvements being made based on feedback and tested in subsequent phases. Despite the added complexity arising from the health status of patients in palliative care, the usability tests and implemented features received positive feedback from both patients and healthcare providers.Conclusion The research findings have demonstrated the potential of digitisation in enhancing the quality of life for patients in palliative care. This was achieved through the implementation of patient-centred design, personalised care, the inclusion of social chatrooms and facilitating end-of-life discussions.

2024

Hybrid time-spatial video saliency detection method to enhance human action recognition systems

Autores
Gharahbagh, AA; Hajihashemi, V; Ferreira, MC; Machado, JJM; Tavares, JMRS;

Publicação
MULTIMEDIA TOOLS AND APPLICATIONS

Abstract
Since digital media has become increasingly popular, video processing has expanded in recent years. Video processing systems require high levels of processing, which is one of the challenges in this field. Various approaches, such as hardware upgrades, algorithmic optimizations, and removing unnecessary information, have been suggested to solve this problem. This study proposes a video saliency map based method that identifies the critical parts of the video and improves the system's overall performance. Using an image registration algorithm, the proposed method first removes the camera's motion. Subsequently, each video frame's color, edge, and gradient information are used to obtain a spatial saliency map. Combining spatial saliency with motion information derived from optical flow and color-based segmentation can produce a saliency map containing both motion and spatial data. A nonlinear function is suggested to properly combine the temporal and spatial saliency maps, which was optimized using a multi-objective genetic algorithm. The proposed saliency map method was added as a preprocessing step in several Human Action Recognition (HAR) systems based on deep learning, and its performance was evaluated. Furthermore, the proposed method was compared with similar methods based on saliency maps, and the superiority of the proposed method was confirmed. The results show that the proposed method can improve HAR efficiency by up to 6.5% relative to HAR methods with no preprocessing step and 3.9% compared to the HAR method containing a temporal saliency map.

2024

Qualitative Data Analysis in the Health Sector

Autores
Veloso, M; Ferreira, MC; Tavares, JMRS;

Publicação
INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 4, WORLDCIST 2023

Abstract
In the health sector, the implementation of qualitative data research is very important to improve overall services. However, the use of these methods remains relatively unexplored when compared to quantitative analyses. This article describes the qualitative data analysis process that is based on the description, analysis and interpretation of data. It also describes a practical case study and the use of NVivo software to assist in the development of a theory-based qualitative analysis process. This article intends to be a step forward in the use of qualitatively based methodologies in future research in the health sector.

2024

Gamification Approaches to Immigrants’ Experiences and Issues: A Systematic Review

Autores
Martins, D; Fernandes, C; Campos, MJ; Ferreira, MC;

Publicação
International Journal of Information, Diversity and Inclusion

Abstract
Societies throughout today’s global village are increasingly aware of the social injustices that minorities face, and immigrants are no exception. Combined with the lack of adaptation resources and the prejudice of non-migrant residents, immigrants may feel powerless in foreign places as they try to find comfort and security in new and unfamiliar environments. It is increasingly urgent to address immigrant issues, considering the crucial role of enhancing diversity, combating prejudice, and raising awareness of minority experiences. This systematic literature review investigates the innovative use of gamification in exploring and addressing the experiences and issues immigrants face. The review follows the PRISMA statement guidelines and checklist. Scopus, CINAHL, and Medline databases were searched, resulting in 17 relevant articles that were carefully analyzed. This research highlights the diverse applications of gamification in studying immigrant experiences via role-playing, interactive storytelling, and empathy-building simulations. This work explores the potential of gamified interventions in addressing pressing issues immigrants face and assesses their effectiveness in fostering empathy and intercultural communication. It also identifies gaps in the existing information sciences literature and proposes directions for future research. In conclusion, this review sheds light on the emerging field of gamification in immigration studies and games studies in the information sciences, providing valuable insights for scholars, policymakers, and practitioners working with immigrant communities worldwide. © 2024 Master of Library Science Program, East Carolina University. All rights reserved.

2024

Abnormal Action Recognition in Social Media Clips Using Deep Learning to Analyze Behavioral Change

Autores
Gharahbagh, AA; Hajihashemi, V; Ferreira, MC; Machado, JJM; Tavares, JMRS;

Publicação
GOOD PRACTICES AND NEW PERSPECTIVES IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 6, WORLDCIST 2024

Abstract
With the increasing popularity of social media platforms like Instagram, there is a growing need for effective methods to detect and analyze abnormal actions in user-generated content. Deep learning is part of a broader family of machine learning methods based on artificial neural networks with representation learning that can learn complex patterns. This article proposes a novel deep learning approach for detecting abnormal actions in social media clips, focusing on behavioural change analysis. The approach uses a combination of Deep Learning and textural, statistical, and edge features for semantic action detection in video clips. The local gradient of video frames, time difference, and Sobel and Canny edge detectors are among the operators used in the proposed method. The method was evaluated on a large dataset of Instagram and Telegram clips and demonstrated its effectiveness in detecting abnormal actions with about 86% of accuracy. The results demonstrate the applicability of deep learning-based systems in detecting abnormal actions in social media clips.

2024

Deep Learning Approaches for Socially Contextualized Acoustic Event Detection in Social Media Posts

Autores
Hajihashemi, V; Gharahbagh, AA; Ferreira, MC; Machado, JJM; Tavares, JMRS;

Publicação
GOOD PRACTICES AND NEW PERSPECTIVES IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 6, WORLDCIST 2024

Abstract
In recent years, social media platforms have become an essential source of information. Therefore, with their increasing popularity, there is a growing need for effective methods for detecting and analyzing their content in real time. Deep learning is a machine learning technique that teaches computers to understand complex patterns. Deep learning techniques are promising for analyzing acoustic signals from social media posts. In this article, a novel deep learning approach is proposed for socially contextualized event detection based on acoustic signals. The approach integrates the power of deep learning and meaningful features such as Mel frequency cepstral coefficients. To evaluate the effectiveness of the proposed method, it was applied to a real dataset collected from social protests in Iran. The results show that the proposed system can find a protester's clip with an accuracy of approximately 82.57%. Thus, the proposed approach has the potential to significantly improve the accuracy of systems for filtering social media posts.

  • 13
  • 183