Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CEGI

2024

Toward Digital Twin Conceptualization in Complex Operations Environments

Autores
Ghanbarifard, R; Almeida, AH; Luz, AG; Azevedo, A;

Publicação
FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING: MANUFACTURING INNOVATION AND PREPAREDNESS FOR THE CHANGING WORLD ORDER, FAIM 2024, VOL 1

Abstract
This paper advocates for Digital Twin (DT) technology as a pivotal solution to address the complexities of Complex Operations Environments (COEs). Recognizing the need for a thorough understanding of COEs and their DTs, a methodology is introduced to bridge existing gaps. Given the lack of a universal definition, the approach leverages the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Latent Dirichlet Allocation (LDA) to extract insights, facilitating the development of a comprehensive definition for COE and DT. The methodology integrates Ontology and Systems Modelling Language (SysML) to provide a semantic and conceptual model of COE and DT. Ontology enriches the semantic understanding, exploring existence and entity relationships, while SysML ensures clear and concise communication through standardized graphical representation. This paper aims to present a methodology to achieve a precise understanding of COEs and their corresponding DTs, providing a robust foundation for addressing operational complexities in dynamic environments.

2024

The Identical Parallel Machine Scheduling Problem with Setups and Additional Resources

Autores
Soares, A; Ferreira, AR; Lopes, MP;

Publicação
FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING: ESTABLISHING BRIDGES FOR MORE SUSTAINABLE MANUFACTURING SYSTEMS, FAIM 2023, VOL 2

Abstract
This paper studies a real world dedicated parallel machine scheduling problem with sequence dependent setups, different machine release dates and additional resources (PMSR). To solve this problem, two previously proposed models have been adapted and a novel objective function, the minimisation of the sum of the machine completion times, is proposed to reflect the real conditions of the manufacturing environment that motivates this work. One model follows the strip-packing approach and the other is time-indexed. The solutions obtained show that the new objective function provides a compact production schedule that allows the simultaneous minimisation of machine idle times and setup times. In conclusion, this study provides valuable insights into the effectiveness of different models for solving PMSR problems in real-world contexts and gives directions for future research in this area using complementary approaches such as matheuristics.

2024

A 3-level integrated lot sizing and cutting stock problem applied to a truck suspension factory

Autores
Andrade, PRD; De Araujo, SA; Cherri, AC; Lemos, FK;

Publicação
TOP

Abstract
This paper studies the process of cutting steel bars in a truck suspension factory with the objective of reducing its inventory costs and material losses. A mathematical model is presented that focuses on decisions for a medium-term horizon (4 periods of 2 months). This approach addresses the one-dimensional 3-level integrated lot sizing and cutting stock problem, considering demand, inventory costs and stock level limits for bars (objects-level 1), springs (items-level 2) and spring bundles (final products-level 3), as well as the acquisition of bars as a decision variable. The solution to the proposed mathematical model is reached through an optimization package, using column generation along with a method for achieving integer solutions. The results obtained with real data demonstrate that the method provides significantly better solutions than those carried out at the company, whilst using reduced computational time. Additionally, the application of tests with random data enabled the analysis of both the effect of varying parameters in the solution, which provides managerial insights, and the overall performance of the method.

2023

A stochastic programming approach to the cutting stock problem with usable leftovers

Autores
Cherri, AC; Cherri, LH; Oliveira, BB; Oliveira, JF; Carravilla, MA;

Publicação
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH

Abstract
In cutting processes, one of the strategies to reduce raw material waste is to generate leftovers that are large enough to return to stock for future use. The length of these leftovers is important since waste is expected to be minimal when cutting these objects in the future. However, in several situations, future demand is unknown and evaluating the best length for the leftovers is challenging. Furthermore, it may not be economically feasible to manage a stock of leftovers with multiple lengths that may not result in minimal waste when cut. In this paper, we approached the cutting stock problem with the possibility of generating leftovers as a two-stage stochastic program with recourse. We approximated the demand levels for the different items by employing a finite set of scenarios. Also, we modeled different decisions made before and after uncertainties were revealed. We proposed a mathematical model to represent this problem and developed a column generation approach to solve it. We ran computational experi-ments with randomly generated instances, considering a representative set of scenarios with a varying probability distribution. The results validated the efficiency of the proposed approach and allowed us to derive insights on the value of modeling and tackling uncertainty in this problem. Overall, the results showed that the cutting stock problem with usable leftovers benefits from a modeling approach based on sequential decision-making points and from explicitly considering uncertainty in the model and the solution method. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )

2023

Mathematical models for the two-dimensional variable-sized cutting stock problem in the home textile industry

Autores
Salem, KH; Silva, E; Oliveira, JF; Carravilla, MA;

Publicação
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH

Abstract
In this paper, we consider the two-dimensional Variable-Sized Cutting Stock Problem (2D-VSCSP) with guillotine constraint, applied to the home textile industry. This is a challenging class of real-world prob-lems where, given a set of predefined widths of fabric rolls and a set of piece types, the goal is to de-cide the widths and lengths of the fabric rolls to be produced, and to generate the cutting patterns to cut all demanded pieces. Each piece type considered has a rectangular shape with a specific width and length and a fixed demand to be respected. The main objective function is to minimize the total amount of the textile materials produced/cut to satisfy the demand. According to Wascher, Hau ss ner, & Schu-mann (2007), the addressed problem is a Cutting Stock Problem (CSP), as the demand for each item is greater than one. However, in the real-world application at stake, the demand for each item type is not very high (below ten for all item types). Therefore, addressing the problem as a Bin-Packing Problem (BPP), in which all items are considered to be different and have a unitary demand, was a possibility. For this reason, two approaches to solve the problems were devised, implemented, and tested: (1) a CSP model, based on the well-known Lodi and Monaci (2003) model (3 variants), and (2) an original BPP-based model. Our research shows that, for this level of demand, the new BPP model is more competitive than CSP models. We analyzed these different models and described their characteristics, namely the size and the quality of the linear programming relaxation bound for solving the basic mono-objective variant of the problem. We also propose an epsilon-constraint approach to deal with a bi-objective extension of the problem, in which the number of cutting patterns used must also be minimized. The quality of the models was evaluated through computational experiments on randomly generated instances, yielding promising results.(c) 2022 Published by Elsevier B.V.

2023

The<i> Floating</i><i>-Cuts</i> model: a general and flexible mixed-integer programming model for non-guillotine and guillotine rectangular cutting problems

Autores
Silva, E; Oliveira, JF; Silveira, T; Mundim, L; Carravilla, MA;

Publicação
OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE

Abstract
Cutting and packing problems are challenging combinatorial optimization problems that have many rel-evant industrial applications and arise whenever a raw material has to be cut into smaller parts while minimizing waste, or products have to be packed, minimizing the empty space. Thus, the optimal solution to these problems has a positive economic and environmental impact. In many practical applications, both the raw material and the cut parts have a rectangular shape, and cut-ting plans are generated for one raw material rectangle (also known as plate) at a time. This is known in the literature as the (two-dimensional) rectangular cutting problem. Many variants of this problem may arise, led by cutting technology constraints, raw-material characteristics, and different planning goals, the most relevant of which are the guillotine cuts. The absence of the guillotine cuts imposition makes the problem harder to solve to optimality.Based on the Floating-Cuts paradigm, a general and flexible mixed-integer programming model for the general rectangular cutting problem is proposed. To the best of our knowledge, it is the first mixed inte-ger linear programming model in the literature for both non-guillotine and guillotine problems. The basic idea of this model is a tree search where branching occurs by successive first-order non-guillotine-type cuts. The exact position of the cuts is not fixed, but instead remains floating until a concrete small rect-angle (also known as item) is assigned to a child node. This model does not include decision variables either for the position coordinates of the items or for the coordinates of the cuts. Under this framework, it was possible to address various different variants of the problem.Extensive computational experiments were run to evaluate the model's performance considering 16 dif-ferent problem variants, and to compare it with the state-of-the-art formulations of each variant. The results confirm the power of this flexible model, as, for some variants, it outperforms the state-of-the-art approaches and, for the other variants, it presents results fairly close to the best approaches. But, even more importantly, this is a new way of looking at these problems which may trigger even better approaches, with the consequent economic and environmental benefits.

  • 19
  • 188