2024
Autores
Costa, L; Almeida, A; Reis, L;
Publicação
5TH INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING, ISM 2023
Abstract
In today's volatile, uncertain, and complex business environments, manufacturing companies must not only adapt to market demands but also minimize the time between problem occurrence and resolution. The implementation of lean manufacturing systems has been crucial in this regard. However, traditional approaches have shown notable inefficiencies that can be effectively addressed through digitalization. By embracing digital solutions, manufacturing companies can ensure efficient continuous improvement, driving performance to higher levels. This study aims to find a digital solution for a specific company that faces daily challenges associated with low visibility into production. An investigation revealed that the Lean tools used by the company were outdated, directly affecting the generated information and consequently, decision-making. The integration of a Manufacturing Execution System into the factory's dynamics was the solution found. In this context, a step-by-step methodology is proposed to guide the implementation. As a result, a prototype of the system was designed. The validation of the system by end-users demonstrates the success of the proposed methodology.
2024
Autores
Carvalho, T; Simoes, AC; Teles, V; Almeida, AH;
Publicação
EUROPEAN JOURNAL OF ENGINEERING EDUCATION
Abstract
Previous studies show that digital transition brings several benefits and challenges for companies. Among those challenges, particularly for Small and Medium-sized Enterprises (SMEs), the main one is increased capacitation, from technical roles to management. Considering this, the main objective of this study is to identify the training needs and the ecosystem support in the face of the digital transition for Portuguese manufacturing SMEs.Semi-structured interviews were conducted with industry experts and company professionals in the automotive and textile sectors. It was concluded that all workers, from technical roles to middle and top management, need more digital capabilities and would benefit from training programmes. The most desired areas for training are data science, virtualisation skills, quality assurance, technical training, and soft skills. The preferred format is physical (or hybrid at most) during working hours and with theoretical training before on-the-job learning. Both industrial companies and experts believe in the value of involving external entities in the training of employees, with the three most referred entities being technology and interface centres, universities, and business associations.
2024
Autores
Azevedo, A; Almeida, AH;
Publicação
2024 IEEE GLOBAL ENGINEERING EDUCATION CONFERENCE, EDUCON 2024
Abstract
In the Fourth Industrial Revolution era, commonly known as Industry 4.0, the manufacturing industry is undergoing a profound transformation driven by the convergence of technological advancements. Industry 4.0 technologies are revolutionising how products are manufactured, from design to production to delivery. These technologies, such as collaborative robotics, digital twins, IoT, and data analytics, enable manufacturers to improve efficiency, productivity, and quality. As Industry 4.0 continues to evolve, the demand for skilled engineers who can effectively design, implement, and manage these sophisticated systems is growing rapidly. Future mechanical engineers must be prepared to navigate this complex and data-driven manufacturing landscape. To address this need, the Faculty of Engineering at the University of Porto developed a new course titled Smart Factories, specifically designed to equip master's students with the knowledge and skills necessary to thrive in the factories of the future. This course utilises an innovative, active experimental learning methodology with industry collaborations and a comprehensive curriculum to foster the development of the multidisciplinary skills necessary to excel in this rapidly evolving field. Through this comprehensive and innovative approach, the Smart Factories course aims to prepare future mechanical engineers to become leaders in smart manufacturing, driving innovation and shaping future factories.
2024
Autores
Ghanbarifard, R; Almeida, AH; Luz, AG; Azevedo, A;
Publicação
FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING: MANUFACTURING INNOVATION AND PREPAREDNESS FOR THE CHANGING WORLD ORDER, FAIM 2024, VOL 1
Abstract
This paper advocates for Digital Twin (DT) technology as a pivotal solution to address the complexities of Complex Operations Environments (COEs). Recognizing the need for a thorough understanding of COEs and their DTs, a methodology is introduced to bridge existing gaps. Given the lack of a universal definition, the approach leverages the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Latent Dirichlet Allocation (LDA) to extract insights, facilitating the development of a comprehensive definition for COE and DT. The methodology integrates Ontology and Systems Modelling Language (SysML) to provide a semantic and conceptual model of COE and DT. Ontology enriches the semantic understanding, exploring existence and entity relationships, while SysML ensures clear and concise communication through standardized graphical representation. This paper aims to present a methodology to achieve a precise understanding of COEs and their corresponding DTs, providing a robust foundation for addressing operational complexities in dynamic environments.
2024
Autores
Soares, A; Ferreira, AR; Lopes, MP;
Publicação
FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING: ESTABLISHING BRIDGES FOR MORE SUSTAINABLE MANUFACTURING SYSTEMS, FAIM 2023, VOL 2
Abstract
This paper studies a real world dedicated parallel machine scheduling problem with sequence dependent setups, different machine release dates and additional resources (PMSR). To solve this problem, two previously proposed models have been adapted and a novel objective function, the minimisation of the sum of the machine completion times, is proposed to reflect the real conditions of the manufacturing environment that motivates this work. One model follows the strip-packing approach and the other is time-indexed. The solutions obtained show that the new objective function provides a compact production schedule that allows the simultaneous minimisation of machine idle times and setup times. In conclusion, this study provides valuable insights into the effectiveness of different models for solving PMSR problems in real-world contexts and gives directions for future research in this area using complementary approaches such as matheuristics.
2023
Autores
Cherri, AC; Cherri, LH; Oliveira, BB; Oliveira, JF; Carravilla, MA;
Publicação
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
Abstract
In cutting processes, one of the strategies to reduce raw material waste is to generate leftovers that are large enough to return to stock for future use. The length of these leftovers is important since waste is expected to be minimal when cutting these objects in the future. However, in several situations, future demand is unknown and evaluating the best length for the leftovers is challenging. Furthermore, it may not be economically feasible to manage a stock of leftovers with multiple lengths that may not result in minimal waste when cut. In this paper, we approached the cutting stock problem with the possibility of generating leftovers as a two-stage stochastic program with recourse. We approximated the demand levels for the different items by employing a finite set of scenarios. Also, we modeled different decisions made before and after uncertainties were revealed. We proposed a mathematical model to represent this problem and developed a column generation approach to solve it. We ran computational experi-ments with randomly generated instances, considering a representative set of scenarios with a varying probability distribution. The results validated the efficiency of the proposed approach and allowed us to derive insights on the value of modeling and tackling uncertainty in this problem. Overall, the results showed that the cutting stock problem with usable leftovers benefits from a modeling approach based on sequential decision-making points and from explicitly considering uncertainty in the model and the solution method. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.