2022
Autores
Lima, L; Pereira, AI; Vaz, C; Ferreira, O;
Publicação
2022 17TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI)
Abstract
Predicting the performance of a mixture is crucial to designing experiences in product development and formulation research. In this work, an application, MDesign, is proposed to construct models in a mixture design with a practical, educational, and intuitive approach. Developed in MATLAB software, the standalone application aims to contribute to the study of mixtures through the definition of multivariate models of different orders, enabling their statistical analysis to verify the robustness of each of those models. Compared to the obtained results from other applications using data experiments published in the literature, the proposed application presents accurate results and good execution. MDesign can be considered an automatic, robust, and valuable tool to support the mixture design in an industrial context.
2022
Autores
Sena, I; Lima, LA; Silva, FG; Braga, AC; Novais, P; Fernandes, FP; Pacheco, MF; Vaz, CB; Lima, J; Pereira, AI;
Publicação
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, OL2A 2022
Abstract
Assessing the different factors that contribute to accidents in the workplace is essential to ensure the safety and well-being of employees. Given the importance of risk identification in hazard prediction, this work proposes a comparative study between different feature selection techniques (.2 test and Forward Feature Selection) combined with learning algorithms (Support VectorMachine, Random Forest, and Naive Bayes), both applied to a database of a leading company in the retail sector, in Portugal. The goal is to conclude which factors of each database have the most significant impact on the occurrence of accidents. Initial databases include accident records, ergonomic workplace analysis, hazard intervention and risk assessment, climate databases, and holiday records. Each method was evaluated based on its accuracy in the forecast of the occurrence of the accident. The results showed that the Forward Feature Selection-Random Forest pair performed better among the assessed combinations, considering the case study database. In addition, data from accident records and ergonomic workplace analysis have the largest number of features with the most significant predictive impact on accident prediction. Future studies will be carried out to evaluate factors from other databases that may have meaningful information for predicting accidents.
2022
Autores
Matte, LH; Vaz, CB;
Publicação
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, OL2A 2022
Abstract
This work aims to identify the critical production costs, related to raw materials and labor, of ordered inflatable-based products without standardization in order to develop a quantitative model to predict these costs accurately in the early project stage, within the budget step. In order to achieve this goal, it was necessary to understand the production processes and the raw materials, as well as to study the principal theoretical aspects related to cost estimating techniques and methods, cost estimating models, model selection, and validation. Therefore, it is intended to develop a multiple linear regression model, applied to historical quantitative data, to estimate each critical variable concerning the quantity of the main raw material and the labor times for critical processes. Six models were analyzed, in which two models are identified for each critical variable such as the linear meters value of the main raw material used in the product, the main raw material cut time involved in the product and the sew time required by the product. The models were evaluated, selected, and validated, defining the best model for each critical variable. The model parameters were obtained using a train dataset and, afterwards, the results of the selected models were validated using a test dataset. The obtained results, through the proposed methodology, were evaluated and proved to be reliable for use in the early stage of product development within the budget step.
2022
Autores
Gharahbagh, AA; Hajihashemi, V; Ferreira, MC; Machado, JJM; Tavares, JMRS;
Publicação
APPLIED SCIENCES-BASEL
Abstract
In recent years, with the growth of digital media and modern imaging equipment, the use of video processing algorithms and semantic film and image management has expanded. The usage of different video datasets in training artificial intelligence algorithms is also rapidly expanding in various fields. Due to the high volume of information in a video, its processing is still expensive for most hardware systems, mainly in terms of its required runtime and memory. Hence, the optimal selection of keyframes to minimize redundant information in video processing systems has become noteworthy in facilitating this problem. Eliminating some frames can simultaneously reduce the required computational load, hardware cost, memory and processing time of intelligent video-based systems. Based on the aforementioned reasons, this research proposes a method for selecting keyframes and adaptive cropping input video for human action recognition (HAR) systems. The proposed method combines edge detection, simple difference, adaptive thresholding and 1D and 2D average filter algorithms in a hierarchical method. Some HAR methods are trained with videos processed by the proposed method to assess its efficiency. The results demonstrate that the application of the proposed method increases the accuracy of the HAR system by up to 3% compared to random image selection and cropping methods. Additionally, for most cases, the proposed method reduces the training time of the used machine learning algorithm.
2022
Autores
Hajihashemi, V; Gharahbagh, AA; Cruz, PM; Ferreira, MC; Machado, JJM; Tavares, JMRS;
Publicação
SENSORS
Abstract
The analysis of ambient sounds can be very useful when developing sound base intelligent systems. Acoustic scene classification (ASC) is defined as identifying the area of a recorded sound or clip among some predefined scenes. ASC has huge potential to be used in urban sound event classification systems. This research presents a hybrid method that includes a novel mathematical fusion step which aims to tackle the challenges of ASC accuracy and adaptability of current state-of-the-art models. The proposed method uses a stereo signal, two ensemble classifiers (random subspace), and a novel mathematical fusion step. In the proposed method, a stable, invariant signal representation of the stereo signal is built using Wavelet Scattering Transform (WST). For each mono, i.e., left and right, channel, a different random subspace classifier is trained using WST. A novel mathematical formula for fusion step was developed, its parameters being found using a Genetic algorithm. The results on the DCASE 2017 dataset showed that the proposed method has higher classification accuracy (about 95%), pushing the boundaries of existing methods.
2022
Autores
Fulgêncio, R; Ferreira, MC; Abrantes, D; Coimbra, M;
Publicação
Transportation Research Procedia
Abstract
Public transport services play an important role in the mobility of the population in urban centers, allowing a decrease in the number of private vehicles in circulation and contributing to a more sustainable mobility. However, the emergence of the COVID-19 pandemic had a serious impact on the mobility habits of the population, with a substantial reduction in the number of public transport passengers due to the fear of contagion, which raises questions about the future sustainability of cities. Thus, it is essential to restore the confidence of travelers to feel safe and comfortable using public transport services. Taking advantage of the widespread use of mobile technologies, this article intends to propose a route planning system for public transport that meets the needs of passengers in terms of safety and comfort. After a systematic review of the existing literature and a series of focus group sessions, a prototype of the system was developed, and subsequently evaluated by potential users through usability tests. The results obtained are a good indicator of the system's functionality and ease of use. This assessment allowed us to corroborate the potential that the proposed route planning system has in promoting the use of public transport services as a means of mobility.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.