Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CEGI

2023

Automatic Data Extraction to Support Management Application

Autores
Melo, R; Vaz, B; Pereira, I;

Publicação
Iberian Conference on Information Systems and Technologies, CISTI

Abstract
When designing a custom-made product it is important to provide the customer with a budget that resembles the final price. In this work it will be developed a simple application in Python to perform automatic data extraction from computer aided design (CAD) files to estimate multiple linear regression models with the intent of obtaining a more accurate cost estimate. The application will provide an estimate of the amount of raw material needed and time taken to produce a simple inflatable and related products. © 2023 ITMA.

2023

Clustering analysis – A case study

Autores
Sena, I; Mendes, J; Fernandes, FP; Pacheco, MF; Vaz, C; Pires, AAC; Maia, JP; Pereira, AI;

Publicação
AIP Conference Proceedings - INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2021

Abstract

2023

A review on urban traffic cameras: Video image processing techniques and applications

Autores
Barros, D; Ferreira, MC; Silva, AR;

Publicação
Advances in Transportation Studies

Abstract
Nowadays, cities face severe problems related to traffic management and mobility in general. Therefore, technologies have been developed that can handle these situations and somehow mitigate the caused impact, such as CCTV cameras. However, the techniques for analyzing the images collected by these cameras are increasingly complex and have numerous applications, being dispersed in the literature. Therefore, this article fills an important research gap by presenting a systematic review of the literature on the possible applications of data collected from CCTV cameras and the image analysis and processing techniques that have been developed and proposed in recent years. This systematic review followed the PRISMA statement guidelines and checklist, and three databases were searched, namely Scopus, Web of Science, and Inspec. From the analysis performed, the following applications were identified: Image/video analysis and traffic estimation, pedestrian detection, traffic data analysis, and forecasting, and traffic management. Regarding the image analysis and processing techniques YOLO (only look once), GMM (Gaussian mixture method), morphological methods, fuzzy logic, and other proprietary methods stand out. After a thorough analysis of traffic data, most works still implemented relatively trivial traffic management systems to generate a series of actions to be eventually applied to traffic controllers. Additionally, it was realized that these techniques could be implemented in industrial products from a future perspective. © 2023, Aracne Editrice. All rights reserved.

2023

Preface

Autores
Bhateja, V; Yang, X; Ferreira, MC; Sengar, SS; Travieso Gonzalez, M;

Publicação
Smart Innovation, Systems and Technologies

Abstract
[No abstract available]

2023

A citywide TD-learning based intelligent traffic signal control for autonomous vehicles: Performance evaluation using SUMO

Autores
Reza, S; Ferreira, MC; Machado, JJM; Tavares, JMRS;

Publicação
EXPERT SYSTEMS

Abstract
An autonomous vehicle can sense its environment and operate without human involvement. Its adequate management in an intelligent transportation system could significantly reduce traffic congestion and overall travel time in a network. Adaptive traffic signal controller (ATSC) based on multi-agent systems using state-action-reward-state-action (SARSA (?) are well-known state-of-the-art models to manage autonomous vehicles within urban areas. However, this study found inefficient weights updating mechanisms of the conventional SARSA (?) models. Therefore, it proposes a Gaussian function to regulate the eligibility trace vector's decay mechanism effectively. On the other hand, an efficient understanding of the state of the traffic environment is crucial for an agent to take optimal actions. The conventional models feed the state values to the agents through the MinMax normalization technique, which sometimes shows less efficiency and robustness. So, this study suggests the MaxAbs scaled state values instead of MinMax to address the problem. Furthermore, the combination of the A-star routing algorithm and proposed model demonstrated a good increase in performance relatively to the conventional SARSA (?)-based routing algorithms. The proposed model and the baselines were implemented in a microscopic traffic simulation environment using the SUMO package over a complex real-world-like 21-intersections network to evaluate their performance. The results showed a reduction of the vehicle's average total waiting time and total stops by a mean value of 59.9% and 17.55% compared to the considered baselines. Also, the A-star combined with the proposed controller outperformed the conventional approaches by increasing the vehicle's average trip speed by 3.4%.

2023

The Art of the Deal: Machine Learning Based Trade Promotion Evaluation

Autores
Viana, DB; Oliveira, BB;

Publicação
Springer Proceedings in Mathematics and Statistics

Abstract
Trade promotions are complex marketing agreements between a retailer and a manufacturer aiming to drive up sales. The retailer proposes numerous sales promotions that the manufacturer partially supports through discounts and deductions. In the Portuguese consumer packaged goods (CPG) sector, the proportion of price-promoted sales to regular-priced sales has increased significantly, making proper promotional planning crucial in ensuring manufacturer margins. In this context, a decision support system was developed to aid in the promotional planning process of two key product categories of a Portuguese CPG manufacturer. This system allows the manufacturer’s commercial team to plan and simulate promotional scenarios to better evaluate a proposed trade promotion and negotiate its terms. The simulation is powered by multiple gradient boosting machine models that estimate sales for a given promotion based solely on the scarce data available to the manufacturer. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

  • 44
  • 190