2025
Autores
Amarelo, A; Amarelo, B; Ferreira, MC; Fernandes, CS;
Publicação
EUROPEAN JOURNAL OF ONCOLOGY NURSING
Abstract
Purpose: To aggregate, interpret, and synthesize findings from qualitative studies on patients' experiences with chemotherapy-induced peripheral neuropathy (CIPN). Methods: A qualitative metasynthesis was conducted following the thematic synthesis approach of Thomas & Harden. A systematic literature search was performed in MEDLINE, CINAHL, Psychology and Behavioral Sciences Collection, and Scopus, including studies published up to December 2024. Two researchers independently conducted the screening and data extraction. They also independently evaluated the quality of the included studies. The data from these studies were then thematically analyzed and synthesized using Dorothea Orem's model. Results: Eighteen studies were included. Four main categories were identified: (1) Physical and Functional Impact of CIPN, (2) Emotional and Psychological Impact, (3) Coping Strategies and Self-management, and (4) Support and Barriers to Health. The findings revealed distinct self-care deficits related to functional limitations, emotional distress, and coping challenges. Utilizing Orem's Nursing Theory of Self-Care Deficit, these deficits were mapped onto different levels of nursing intervention, ranging from compensatory support to educational and self-management strategies, emphasizing an action-oriented approach in patient care. Conclusions: This metasynthesis highlights the complex and multidimensional effects of peripheral neuropathy on the lives of cancer patients. Applying Orem's model underscores the critical role of nurses in addressing healthcare system gaps, functional impairments, and long-term adaptation challenges to enhance supportive care for individuals suffering from CIPN.
2025
Autores
Oliveira, BB; Ahipasaoglu, SD;
Publicação
TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW
Abstract
Balancing supply and demand in free-floating one-way carsharing systems is a critical operational challenge. This paper presents a novel approach that integrates a binary logit model into a mixed integer linear programming framework to optimize short-term pricing and fleet relocation. Demand modeling, based on a binary logit model, aggregates different trips under a unified utility model and improves estimation by incorporating information from similar trips. To speed up the estimation process, a categorizing approach is used, where variables such as location and time are classified into a few categories based on shared attributes. This is particularly beneficial for trips with limited observations as information gained from similar trips can be used for these trips effectively. The modeling framework adopts a dynamic structure where the binary logit model estimates demand using accumulated observations from past iterations at each decision point. This continuous learning environment allows for dynamic improvement in estimation and decision-making. At the core of the framework is a mathematical program that prescribes optimal levels of promotion and relocation. The framework then includes simulated market responses to the decisions, allowing for real-time adjustments to effectively balance supply and demand. Computational experiments demonstrate the effectiveness of the proposed approach and highlight its potential for real-world applications. The continuous learning environment, combining demand modeling and operational decisions, opens avenues for future research in transportation systems.
2025
Autores
Currie, SM; M'Hallah, R; Oliveira, BB;
Publicação
European Journal of Operational Research
Abstract
Car sharing, car clubs and short-term rentals could support the transition toward net zero but their success depends on them being financially sustainable for service providers and attractive to end users. Dynamic pricing could support this by incentivizing users while balancing supply and demand. We describe the usage of a round trip car sharing fleet by a continuous time Markov chain model, which reduces to a multi-server queuing model where hire duration is assumed independent of the hourly rental price. We present analytical and simulation optimization models that allow the development of dynamic pricing strategies for round trip car sharing systems; in particular identifying the optimal hourly rental price. The analytical tractability of the queuing model enables fast optimization to maximize expected hourly revenue for either a single fare system or a system where the fare depends on the number of cars on hire, while accounting for stochasticity in customer arrival times and durations of hire. Simulation optimization is used to optimize prices where the fare depends on the time of day or hire duration depends on price. We present optimal prices for a given customer population and show how the expected revenue and car availability depend on the customer arrival rate, willingness-to-pay distribution, dependence of the hire duration on price, and size of the customer population. The results provide optimal strategies for pricing of car sharing and inform strategic managerial decisions such as whether to use time- or state-dependent pricing and optimizing the fleet size. © 2025 The Authors
2025
Autores
Ferreira, L; Maciel, MVM; de Carvalho, JV; Silva, E; Alvelos, FP;
Publicação
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
Abstract
The Prisoner Transportation Problem is an NP-hard combinatorial problem and a complex variant of the Dial-a- Ride Problem. Given a set of requests for pick-up and delivery and a homogeneous fleet, it consists of assigning requests to vehicles to serve all requests, respecting the problem constraints such as route duration, capacity, ride time, time windows, multi-compartment assignment of conflicting prisoners and simultaneous services in order to optimize a given objective function. In this paper, we present anew solution framework to address this problem that leads to an efficient heuristic. A comparison with computational results from previous papers shows that the heuristic is very competitive for some classes of benchmark instances from the literature and clearly superior in the remaining cases. Finally, suggestions for future studies are presented.
2025
Autores
Andrade, PRD; De Araujo, SA; Cherri, AC; Lemos, FK;
Publicação
TOP
Abstract
This paper studies the process of cutting steel bars in a truck suspension factory with the objective of reducing its inventory costs and material losses. A mathematical model is presented that focuses on decisions for a medium-term horizon (4 periods of 2 months). This approach addresses the one-dimensional 3-level integrated lot sizing and cutting stock problem, considering demand, inventory costs and stock level limits for bars (objects-level 1), springs (items-level 2) and spring bundles (final products-level 3), as well as the acquisition of bars as a decision variable. The solution to the proposed mathematical model is reached through an optimization package, using column generation along with a method for achieving integer solutions. The results obtained with real data demonstrate that the method provides significantly better solutions than those carried out at the company, whilst using reduced computational time. Additionally, the application of tests with random data enabled the analysis of both the effect of varying parameters in the solution, which provides managerial insights, and the overall performance of the method.
2024
Autores
Ali, S; Ramos, AG; Carravilla, MA; Oliveira, JF;
Publicação
APPLIED SOFT COMPUTING
Abstract
In online three-dimensional packing problems (3D-PPs), unlike offline problems, items arrive sequentially and require immediate packing decisions without any information about the quantities and sizes of the items to come. Heuristic methods are of great importance in solving online problems to find good solutions in a reasonable amount of time. However, the literature on heuristics for online problems is sparse. As our first contribution, we developed a pool of heuristics applicable to online 3D-PPs with complementary performance on different sets of instances. Computational results showed that in terms of the number of used bins, in all problem instances, at least one of our heuristics had a better or equal performance compared to existing heuristics in the literature. The developed heuristics are also fully applicable to an intermediate class between offline and online problems, referred to in this paper as a specific type of semi-online with full look-ahead, which has several practical applications. In this class, as in offline problems, complete information about all items is known in advance (i.e., full look-ahead); however, due to time or space constraints, as in online problems, items should be packed immediately in the order of their arrival. As our second contribution, we presented an algorithm selection framework, building on developed heuristics and utilizing prior information about items in this specific class of problems. We used supervised machine learning techniques to find the relationship between the features of problem instances and the performance of heuristics and to build a prediction model. The results indicate an 88% accuracy in predicting (identifying) the most promising heuristic(s) for solving any new instance from this class of problems.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.