2012
Autores
Biazoli, CR; Silva, S; Franco, MAR; Frazao, O; Cordeiro, CMB;
Publicação
APPLIED OPTICS
Abstract
Real-time monitoring of the fabrication process of tapering down a multimode-interference-based fiber structure is presented. The device is composed of a pure silica multimode fiber ( MMF) with an initial 125 mu m diameter spliced between two single-mode fibers. The process allows a thin MMF with adjustable parameters to obtain a high signal transmittance, arising from constructive interference among the guided modes at the output end of the MMF. Tapered structures with waist diameters as low as 55 mu m were easily fabricated without the limitation of fragile splices or difficulty in controlling lateral fiber alignments. The sensing device is shown to be sensitive to the external environment, and a maximum sensitivity of 2946 nm/refractive index unit in the refractive index range of 1.42-1.43 was attained. (c) 2012 Optical Society of America
2012
Autores
Silva, S; Coelho, L; Roy, P; Frazao, O;
Publicação
Photonic Sensors
Abstract
An interferometer based on a D-shape chaotic optical fiber for measurement of multiparameters was proposed. The sensing structure relied on a D-shape fiber section spliced in between two singlemode fibers and interrogated in transmission. The optical spectrum was composed by multiple interference loss peaks, which were sensitive to the refractive index, temperature and strain-maximum sensitivities of 95.2 nm/RIU, 10.5 pm/ and -3.51 pm/µe, respectively, could be achieved. © The Author(s) 2012.
2009
Autores
Richter Trummer, V; Tavares, SMO; Peixoto, DFC; Silva, SF; Frazao, O; Moreira, PMGP; De Castro, PMST;
Publicação
AES-ATEMA International Conference Series - Advances and Trends in Engineering Materials and their Applications
Abstract
Welding process monitoring using fibre Bragg grating (FBG) sensor technology is a promising technique to measure temperature and strain during the fabrication process. Examples of FBG sensor based temperature and strain measurements in butt-welding of plates are presented in this paper. In order to be able to measure strain and/or temperature it is however necessary to calibrate these instruments for accurate measurement results. In the present work calibration for strain measurements at constant temperature using a four point bending test is performed. This type of mechanical test allows enough space for instrumentation between the inner rollers. A finite element model is made using Abaqus for comparison and strain gauges are used for calibration purposes. Temperature calibration was carried out using an oven. The FBG sensors' measurements were calibrated with data obtained by thermocouples. Tests on welds are presented and the possible impact of this monitoring technology is briefly discussed in the light of process optimization and subsequent structural health monitoring. © AES-Advanced Engineering Solutions.
2011
Autores
Queiros, RB; Silva, SO; Noronha, JP; Frazao, O; Jorge, P; Aguilar, G; Marques, PVS; Sales, MGF;
Publicação
BIOSENSORS & BIOELECTRONICS
Abstract
Cyanobacteria deteriorate the water quality and are responsible for emerging outbreaks and epidemics causing harmful diseases in Humans and animals because of their toxins. Microcystin-LR (MCT) is one of the most relevant cyanotoxin, being the most widely studied hepatotoxin. For safety purposes, the World Health Organization recommends a maximum value of 1 mu g L(-1) of MCT in drinking water. Therefore, there is a great demand for remote and real-time sensing techniques to detect and quantify MCT. In this work a Fabry-Perot sensing probe based on an optical fibre tip coated with a MCT selective thin film is presented. The membranes were developed by imprinting MCT in a sol-gel matrix that was applied over the tip of the fibre by dip coating. The imprinting effect was obtained by curing the sol-gel membrane, prepared with (3-aminopropyl) trimethoxysilane (APTMS), diphenyl-dimethoxysilane (DPDMS), tetraethoxysilane (TEOS), in the presence of MCT. The imprinting effect was tested by preparing a similar membrane without template. In general, the fibre Fabry-Perot with a Molecular Imprinted Polymer (MIP) sensor showed low thermal effect, thus avoiding the need of temperature control in field applications. It presented a linear response to MCT concentration within 0.3-1.4 mu g L(-1) with a sensitivity of -12.4 +/- 0.7 nm L mu g(-1). The corresponding Non-Imprinted Polymer (NIP) displayed linear behaviour for the same MCT concentration range, but with much less sensitivity, of -5.9 +/- 0.2 nm L mu g(-1). The method shows excellent selectivity for MCT against other species co-existing with the analyte in environmental waters. It was successfully applied to the determination of MCT in contaminated samples. The main advantages of the proposed optical sensor include high sensitivity and specificity, low-cost, robustness, easy preparation and preservation.
2012
Autores
Silva, S; Pachon, EGP; Franco, MAR; Hayashi, JG; Xavier Malcata, FX; Frazao, O; Jorge, P; Cordeiro, CMB;
Publicação
APPLIED OPTICS
Abstract
The proposed sensing device relies on the self-imaging effect that occurs in a pure silica multimode fiber (coreless MMF) section of a single-mode-multimode-single-mode (SMS)-based fiber structure. The influence of the coreless-MMF diameter on the external refractive index (RI) variation permitted the sensing head with the lowest MMF diameter (i.e., 55 mu m) to exhibit the maximum sensitivity (2800 nm/RIU). This approach also implied an ultrahigh sensitivity of this fiber device to temperature variations in the liquid RI of 1.43: a maximum sensitivity of -1880 pm/degrees C was indeed attained. Therefore, the results produced were over 100-fold those of the typical value of approximately 13 pm/degrees C achieved in air using a similar device. Numerical analysis of an evanescent wave absorption sensor was performed, in order to extend the range of liquids with a detectable RI to above 1.43. The suggested model is an SMS fiber device where a polymer coating, with an RI as low as 1.3, is deposited over the coreless MMF; numerical results are presented pertaining to several polymer thicknesses in terms of external RI variation. (C) 2012 Optical Society of America
2010
Autores
Queiros, RB; Silva, SO; Sales, MGF; Noronha, JP; Frazao, O; Jorge, PAS; Aguilar, GG;
Publicação
FOURTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS
Abstract
The deterioration of water quality by Cyanobacteria causes outbreaks and epidemics associated with harmful diseases in Humans and animals because of the released toxins. Microcystin-LR (mcyst) is one of the most widely studied hepatotoxin and World Health Organization recommends a maximum value of 1 mu g L-1 of mcyst in drinking-water. Therefore, there is a great demand for remote, real-time sensing techniques to detect and quantify the presence of mcyst. In this work a Fabry-Perot sensing probe based on a fibre tip coated with a mcyst sensitive thin film is presented. Highly specific recognition membranes, using sol-gel based Molecular Imprinted Polymers (MIPs), were developed to quantify microcystins in water, showing great potential in the analysis of this kind of samples. The fibre Fabry-Perot MIP sensor shows a linear response to mcyst concentration with a sensitivity of -13.2 +/- 0.4 nm L mu g(-1).
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.