2019
Autores
Novais, S; Silva, SO; Frazão, O;
Publicação
IEEE Sensors Letters
Abstract
In this article, a self-referencing intensity-based fiber optic sensor relying on the principle of Fabry-Perot interference is proposed and demonstrated to measure curvature. The sensor is manufactured producing an air bubble cavity between two sections of multimode fiber. By detecting optical power variations at specific wavelengths, it was possible to measure curvature, enabling this sensor as a self-referencing system. For this setup, the achieved curvature sensitivity was 0.561 ± 0.014 dB/m-1, with a correlation factor up to 0.997, within the measurement range of 0.0-0.8 m-1. The proposed system has several features, including the self-referencing characteristic and its structure simplicity in terms of measuring procedure, making it a useful system. © 2017 IEEE.
2019
Autores
Novais, S; Silva, SO; Frazao, O;
Publicação
SEVENTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS (EWOFS 2019)
Abstract
A reflective fiber optic sensor based on a Fabry-Perot cavity made by splicing two sections of multimode fiber is demonstrated to measure the needle curvature. The sensing structure was incorporated into a medical needle and characterized for curvature and temperature measurements. The maximum sensitivity of -0.152dB/m(-1) was obtained to the curvature measurements, with a resolution of 0.089m(-1). When subjected to temperature, the sensing head presented a low temperature sensitivity, which resulted in a small cross-sensitivity.
2019
Autores
Perez Herrera, RA; Novais, S; Bravo, M; Leandro, D; Silva, SF; Frazao, O; Lopez Amo, M;
Publicação
SEVENTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS (EWOFS 2019)
Abstract
In this work we demonstrate the multiplexing capability of new optical fiber Fabry-Perot interferometers based on air-microcavities using a commercial FBG interrogator. Three optimized air-microcavity interferometer sensors have been multiplexed in a single network and have been monitored using the commercial FBGs interrogator in combination with FFT calculations. Results show a sensitivity of 2.18 pi rad/m epsilon and a crosstalk-free operation.
2019
Autores
Monteiro, CS; Raposo, M; Ribeiro, P; Silva, S; Frazao, O;
Publicação
FOURTH INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS
Abstract
Hollow microsphere fiber sensors are Fabry-Perot interferometers ( FPI) that can be used for lateral loading, temperature, and refractive index sensing. In this work, graphene oxide (GO) is explored as a tunable platform for enhancing the spectral properties of hollow microsphere fiber sensors. GO offers similar mechanical and optical properties as graphene, with the advantage of a wider range of deposition methods and a lower cost. The influence of multilayer coatings of polyethylenimine (PEI) and GO, achieved with the layer-by-layer technique, on the reflectivity of the outer surface, and hence, on the spectrum of the FPI for maximum of 30 bilayers was studied. The obtained results revealed a change of the microsphere outer surface reflectivity and also of visibility of the reflected spectrum when varying the number of bilayers. A maximum signal amplitude of 3.9 dB was attained for the 13th bilayer, allowing to conclude that PEI/GO multilayer coatings can be used for enhancing desired properties of the three-wave FPI for different sensing applications.
2019
Autores
Monteiro, CS; Viveiros, D; Linhares, C; Tavares, SMO; Mendes, H; Silva, SO; Marques, PVS; Frazao, O;
Publicação
FOURTH INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS
Abstract
In this work, 3D printing is explored as a solution for fast prototyping of optical fiber sensors with applications in power transformers. Two different sensing structures were evaluated using finite element method (FEM) analysis and were fabricated using 3D printing. The printed structures are composed by acrylonitrile butadiene styrene (ABS), a common thermoplastic polymer used in 3D printing. Attaching a fiber Bragg grating (FBG) to each structure, frequency measurements were successfully obtained for values between 20 and 250 Hz.
2019
Autores
Monteiro, CS; Vaz, A; Viveiros, D; Linhares, C; Tavares, SMO; Mendes, H; Silva, SO; Marques, PVS; Frazao, O;
Publicação
SEVENTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS (EWOFS 2019)
Abstract
Power transformers are at the core of power transmission systems. The occurrence of system failure in power transformers can lead to damage of adjacent equipment and cause service disruptions. Structural and electrical integrity assessment in real time is of utter importance. Conventional techniques, typically electrical sensors or chemical analysis, present major drawbacks for real-time measurements due to high electromagnetic interference or for being time-consuming. Optical fiber sensors can be used in power transformers, as they are compact and immune to electromagnetic interferences. In this work, an optical fiber sensor composed by 2 fiber Bragg gratings, attached in a cantilever structure was explored. The prototype was developed with a 3D printer using a typical filament (ABS) that enable a fast and low-cost prototyping. The response of the sensor to vibration was tested using two different vibration axes for frequencies between 10 and 500 Hz. Oil compatibility was also studied using thermal aging and electrical tests. The studies shown that ABS is compatible with the power transformer mineral oil, but the high working temperatures may lead to material creeping, resulting in permanent structural deformation.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.