Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Susana Oliveira Silva

2019

FUNCTIONAL METAMATERIALS FOR OPTICAL SENSING OF HYDROGEN

Autores
Guerreiro, A; Apolinario, A; Lopes, A; Hierro Rodriguez, A; Aguilar, G; Baptista, JM; Silva, NA; Frazao, O; Quiterio, P; Jorge, P; Rodrigues, P; Moraes, SS; Silva, S; Ferreira, TD; Santos, JL; Araujo, JP;

Publicação
FOURTH INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS

Abstract
We present the design, fabrication and optical characterization of functional metamaterials for optical sensing of Hydrogen based on inexpensive self-assembly processes of metallic nanowires integrated in nanoporous alumina templates([37-42]). The optical properties of these materials strongly depend on the environmental concentration or partial pressure of hydrogen and can be used to develop fully optical sensors that reduce the danger of explosion. Optical metamaterials are artificial media, usually combining metallic and dielectric sub-wavelength structures, that exhibit optical properties that cannot be found in naturally occurring materials. Among these, functional metamaterials offer the added possibility of altering or controlling these properties externally after fabrication, in our case by contact with a hydrogen rich atmosphere. This dependency can be used to design([43-45]) and develop optical sensors that respond to this gas or to chemical compounds that contain or release hydrogen. In this paper we present some designs for hydrogen functional metamaterials and discuss the main parameters relevant in the optimization of their response.

2020

Tuning of Fiber Optic Surface Reflectivity through Graphene Oxide-Based Layer-by-Layer Film Coatings

Autores
Monteiro, CS; Raposo, M; Ribeiro, PA; Silva, SO; Frazao, O;

Publicação
PHOTONICS

Abstract
The use of graphene oxide-based coatings on optical fibers are investigated, aiming to tune the reflectivity of optical fiber surfaces for use in precision sensing devices. Graphene oxide (GO) layers are successfully deposited onto optical fiber ends, either in cleaved or hollow microspheres, by mounting combined bilayers of polyethylenimine (PEI) and GO layers using the Layer-by-Layer (LbL) technique. The reflectivity of optical fibers coated with graphene oxide layers is investigated for the telecom region allowing to both monitor layer growth kinetics and cavity characterization. Tunable reflective surfaces are successfully attained in both cleaved optical fibers and hollow microsphere fiber-based sensors by simply coating them with PEI/GO layers through the LbL film technique.

2020

Curvature detection in a medical needle using a Fabry-Perot cavity as an intensity sensor

Autores
Novais, S; Silva, SO; Frazao, O;

Publicação
MEASUREMENT

Abstract
The use of optical sensors inside the needle can improve targeting precision and can bring real-time information about the location of the needle tip if necessary, since a needle bends through insertion into the tissue. Therefore, the precise location of the needle tip is so important in percutaneous treatments. In the current experiment, a fiber sensor based on a Fabry-Perot (FP) cavity is described to measure the needle curvature. The sensor is fabricated by producing an air bubble between two sections of multimode fiber. The needle with the sensor therein was attached at one end and deformed by the application of movements. The sensor presents a sensitivity of -0.152 dB/m(-1) to the curvature measurements, with a resolution of 0.089 m(-1). The sensory structure revealed to be stable, obtaining a cross-sensitivity to be 0.03 m(-1)/degrees C.

2020

Curvature Sensor Based on a Long-Period Grating in a Fiber Ring Resonator Interrogated by an OTDR

Autores
Magalhaes, R; Silva, S; Frazao, O;

Publicação
PHOTONIC SENSORS

Abstract
The proposed technique demonstrates a fiber ring resonator interrogated by an optical time domain reflectometer (OTDR), for intensity sensing. By using this methodology, a cavity round trip time of 2.85 mu s was obtained. For a proof of concept, a long-period grating was inserted in the resonant cavity operating as a curvature sensing device. A novel signal processing approach was outlined, regarding to the logarithmic behavior of the OTDR. Through analyzing the experimental results, an increase in the measured sensitivities was obtained by increasing applied bending. With curvatures performed from 1.8 m(-1) to 4.5 m(-1), the sensitivity values ranged from 2.94 dB center dot km(-1) to 5.15 dB center dot km(-1). In its turn, the sensitivities obtained presented a linear behavior when studied as a function of the applied curvature, following a slope of 0.86x10(-3) dB. The advantages of applying this technique were also discussed, demonstrating two similar fiber rings multiplexed in a series of configurations.

2020

Detection of the Crystallization Process of Paracetamol with a Multi-Mode Optical Fiber in a Reflective Configuration

Autores
Soares, L; Novais, S; Ferreira, A; Frazao, O; Silva, S;

Publicação
SENSORS

Abstract
A configuration of a refractometer sensor is described with the aim of optically detecting the crystallization process of paracetamol. The developed sensing head is based on a conventional cleaved multi-mode fiber. The fiber tip sensor structure was submitted to contact with the liquid of interest (paracetamol fully dissolved in 40% v/v of ethanol/water) and the crystallization process of paracetamol, induced with continued exposure to air, was monitored in real time.

2020

Femtosecond laser direct written off-axis fiber Bragg gratings for sensing applications

Autores
Viveiros, D; Amorim, VA; Maia, JM; Silva, S; Frazao, O; Jorge, PAS; Fernandes, LA; Marques, PVS;

Publicação
OPTICS AND LASER TECHNOLOGY

Abstract
First order off-axis fiber Bragg gratings (FBGs) were fabricated in a standard single mode fiber (SMF-28e) through femtosecond laser direct writing. A minimum offset distance between the grating and core center of 2.5 mu m was found to create a multimode section, which supports two separate fiber modes (LP0,1 and LP1,1), each split into two degenerate polarization modes. The resulting structure breaks the cylindrical symmetry of the fiber, introducing birefringence (approximate to 10(-4)) resulting in a polarization dependent Bragg wavelength for each mode. Based on the modal and birefringence behavior, three off-axis FBGs were fabricated with 3.0, 4.5 and 6.0 mu m offsets from the core center, and then characterized in strain, temperature, and curvature. The tested off-axis FBGs exhibited a similar strain sensitivity of similar to 1.14 pm/mu epsilon and a temperature sensitivity of similar to 12 pm/C. The curvature and orientation angle were simultaneously monitored by analyzing the intensity fluctuation and the wavelength shift of the LP1,1 Bragg resonance. A maximum curvature sensitivity of 0.53 dB/m(-1) was obtained for the off-axis FBG with a 3.0 mu m offset.

  • 9
  • 22